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PREFACE

The work which is reported herein is a combined theoretical and experi-
mental effort.

Among the many who participated creatively and effectively in this

program were V. H. Weston_ A. W. Wren_ R. E. Kovac_ M. J. Rycus_ E. LeBaron_

R. A. Henry_ and H. E. Brooks. Professor E. F. Masur_ of the Engineering

Mechanics Department_ University of Michigan_ wrote Appendices B and C.

Most of the numerical work was performed on Conductron's IBM 1620 computer.

R. K. Ritt

Project Manager

iii



" Conductm,nCorporation

i. INTRODUCTION

This report is written at the conclusion of the second phase of studies

and measurements performed by Conductron Corporation for NASA, GSFC, under

Contract No. NAS 9-3232. The work done in the first phase, Balloon Segment

Measurements, has previously been reported (Conductron Report No. O038-2-A-F),

and will, in the present report, be further discussed and related to the

second phase work.

The second phase program has consisted of several separate, but related

tasks; which we shall now describe in general terms, and which shall be dis-
cussed in detail below.

Task I. To postulate a balloon structure, on the basis of experimental

and theoretical materials studies supplied to Conduetron by NASA, and from

this postulated structure to predict the reflectivity of the balloon as a

function of surface stress_ frequency_ polarization, and viewing aspect.

Further_ to examine these material studies to compare with conclusions inde-

pendently arrived at by Conductron.

Task 2. To perform radar reflectivity measurements on the inflated

balloon during Static Inflation Tests at Lakehurst NAS; to reduce data

obtained, and from the reduced data to determine the radar refleetivity

properties of the balloon as a function of surface stress, frequency, polari-

zation, and viewing aspect.

Task 3. To predict the radar reflectivity properties of the inflated

balloon_ as a function of surface stress_ frequency, polarization, and view-

ing aspect, on the basis of photogrammetric measurements made during the

Static Inflation Tests_ and supplied to Conductron by NASA.

These tasks were formulated by NASA as components of a program whose

overall objective is to develop and establish means of estimating flight

pePformance of passive communications satellites on the basis of pre-flight

experiments, and to provide guidelines in the selection of satellite mate-

rials, fabrication, and deployment techniques. Although the NASA-Conductron

rogram which this report describes is concerned primarily with the A-12

Echo II) satellite_ the techniques developed are not limited to a particular

passive system.
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2. THEORETICAL CONSIDERATIONS

The theoretical question which underlies most of the work done during

this phase has been:

Given the shape of a conducting surface, and a given source of electro-
magnetic energy, whatlis the eiectromagnetic fieid observed at an arbitrary

point not on the surface?

This question, of course, is the central problem in electromagnetic

theory. In this section, a mathematical formulation of the problem is given

which is particularly appropriate to the balloon configuration with which we

are dealing. By this is meant that when this formulation is completed, and

the balloon and the operating frequencies specified, approximations which

lead to numerical answers can readily be made.

Certain preliminary remarks are necessary. Let the time dependence of

the electromagnetic field be harmonic, with frequency f cycles/sec. Let

= 2_f. Then the electric and magnetic components of the field can be

represented, respectively, as

Z (x, y, z) e-imt

and

H (X, y, Z) e-i_t

E and H are complex vectors. Let k = -, where c = velocity of light

in va_uo, a_d let units be chosen so that t_e permeability and permittivity

of free space are both unity. Then _ and _ satisfy the Maxwell equations:

V X E - i k H = 0- - (1)
V×H+ikE=O

Let E(i) and H(i) be the field components which would be present if just the

energy source_ but not the conducting surface, were _resent. In any region

of space which excludes the source, the pair E(i), Hki) satisfy (i). E(i)

and H (I) are called the incident fields.

form:

In the presence of the conducting body, the total field _, H, has the

E = i(i)+

H = H(i) + H(s) _
(2)



E (s) and H (s) are called the scattered fields. The scattered field is gener-

a-ted by c_rrents induced on the conducting surface. If the surface is per-

fectly conducting, the value of the current, J (x, y_ z), at a point on the

surface, is given by the formula

J (x, y, z) = _ (x, y, z) × H (x, y, z) (3)
m

In (3), _ (x, y, z) is the outward normal to the surface, and H is the total

magnetic field.

Let the position vector of a point (x, y, z) be designated by _ = x _ +
y _ + z _, where x, y, z are the unit coordinate vectors. The scattered mag,

netic field can be represented by the formula:

__(s)(7) _ (rl) x (7- 71 _ 3
s 17- rll

ik[7 - 71[

e d S(7 I)

(4)

In (4) the integral is taken over the surface of the perfectly conducting

body. The surface current J(7) must satisfy the equation:

1 _. (7) x 77£(3) = 2 r_ (7) x H(i)(7) ] -
S

(7 l) x (7- [7- 7113 e

(5)

The derivation of equation (4) can be found in "Electromagnetic Theory",

J. A. Stratton, pp. 460-%68. It depends upon equation (I) and the fact that

at the perfectly conducting surface, the tangential component of the total

field must vanish. The derivation of (9) is implicit in this same section

of Stratton; it can be found explicitly in Maue [Zeit f Physik, 126 (19_9)].

Equations ($) and (5).provide a formulation of the problem. Given the
incident magnetic field, H(1), and the surface, S, a solution J(7) must be

found for (5). Then this-solution must be inserted into,the i_tegral (g);

the resulting integration gives the scattered field, HkS)(7).

Equation (5) is an integral equation for _(7). In principle it has a

unique solution, but in practice this solution, except for some very special

cases, cannot be represented in a form which is amenable to numerical calcu-

lation. It is now appropriate to discuss the approximation to _(7) when S

is a balloon-like structure.
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2.1 THESOURCEFIELD,H(i)(7)

The incident field is created by a distribution of currents located in a

finite volume V. If some point within this volume is chosen to be the center

of a fixed coordinate system, then analogous to (_), the incident field can

be represented as an integral:

H(i)(7) = _ -_

V

17 _ 7113 e

--> /% g_.

Let r = R u, where u is a unit vector. Then,

!(i)(T1)× (7- 71)}

d V(_ 1)

lim R e-ikR H (i) (R_) =_-_ik /77 (J(i)(71) X _) e-ik_'71 dV(_l)

R_ V

(6)

(7)

in (7) F(_) is a vector which depends only on _, and which is perpendicular

to _. Qe rewrite (7) in the form

ikR

H(i)(R _) ~ e F(P_) (8)
-- R --

If the source is a high gain antenna, will have a maximum for a fixed

direction, to, it will be approximately constant for a set of directions

satisfying the inequality

• G > cos _/2,
0

and very small, relative to l_(_o)I, if _ • Go < cos _/2. The angle _ is
called the beamwidth of the antenna. If the antenna is constructed so that

the only contributions made to F(_) in the integral (7) come from currents

with a fixed direction, PI' the_ _F(_) = G(_) _, where _ = Pl × _"

Then for directions _ within the beam (i.e., _ . _ > cos _/2),
o

H(i)(R_) eikR- ~ R G(G)_.
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This represents a spherical wave, propagating radially, with wavelength
2_

k =--. The constant phase surfaces are spheres, and for large values of R,
can bk approximated by planes. Therefore, it is conventional, if the surface

S'. Ss located within the beam, and if R is sufficiently large, to replace

H_i)(5) by a linearly polarized plane wave,

H (i )(5) ik_ ° "5 ^ ^ ^
~ e Po' where Po = Pl X Go.

As far as the surface of the scatterer is concerned, the only difference be-

tween this field and the true incident field is the constant numerical factor

, and since the integral equation (9) is linear, the solution is changed

byKmultipiication by this constant factor. If the coordinate system is

changed so that the center of coordinates is at the scatterer instead of at

the source, the reDresentation for the incident plane wave is then
-ik_ .r

H(i)(5) = e -o ^
- Po (9)

Therefore, in the discussion of the refleetivity properties of the balloon,
the incident magnetic field will be taken to be of the form (9). The crite-

rion for the permissibility of this replacement is a measure of the deviation,

over the region occupied by the scatterer, of the true spherical wave front

and the plane wave front. Th&s criterion is called the far zone criterion,
and is usually defined by the requirement that

4 d 2

R >> --C- (lO)

where d is the largest dimension of the scatterer perpendicular to the beam.

2.2 APPROXIMATE SOLUTION TO (9)

If H(i)(_) is a plane wave, (9), and if the scatterer is a convex sur-

face, it-is possible to define the illuminated and the shadow region. Refer-
ring to Figure 1

0

0

Figure i



The direction of propagation is - _ , the shaded region is the shadowregion,
and the unshadedregion is the illu_inated region. It has been shownby
V. A. Fock [Journal of Physics, USSR, iO, 130-136 (1956)] and more rigorously

by J. A. Cullen [Phys. Rev., 109, _ I_3-1867 (1998)] that as k _ _, the

solution, _(7) has the limiting form

2 £ (_) X H(i)(7) in illuminated region

} (ll)
- 0 in shadow region

This is the classical _eometric optics solution; when.this solution is sub-
stituted into (4), the resulting representation for H[i)(_) is called the

_hysical optics integral.

2.3 THE VALIDI_f OF THE PHYSICAL OPTICS INTEGRAL

The theoretical calculatign _ _erformed by Conductron on the Echo !!

balloon have been to compute H_kl)(r) by means of the physical optics inte-

gral. The justification for this is based both on elementary physical con-

siderations as well as rigorous information based on the Fock theory.

The obvious physical justification for using (II) to represent the
current distribution can be obtained by the examination of equation (9).
..... _ --> --> . .

,f S were an inf_nlte Diane the vectors J(rl) and r - r_ In the integral

would both lie in the plane_ and therefore _he cross-product n(r) ×

[J(r_ ) X (r - rl )] would vanish for all,r_]. Thus, for S an inflnlte plane,
-- i _ . I,_ _i _ - -the exact solutlon of (9).18 2 n(r) X H _r), thls belng independent of

either k or the form of H(i)(_). QualYtatively, one sees that if the sur-

face deviates only slightly from being a plane, this representation con-

tinues to be a good approximation. The question arises: what is meant by

"deviates slightly from being a plane"? Since Maxwell's equations are un-

altered if the distance scale and the wavelength 2_/k are multiplied by the

same factor, it is clear that if a is a distance which plays a role in the

description of the fields, then the product ka must be preserved if the
fields are to be unaltered. Since the deviation of a surface from being a

plane is measured by its principal radii of curvature, the statement that

the surface "deviates slightly from being a plane" can be equated to the

statement that "ka must be large", where a is either of the principal radii

of curvature. Although the above dimensional argument is not at all

rigorous, it contains the physical reasoning which has been used to justify

the use of physical optics to compute radar refleetivity.

Historically, the physical optics integral has been used to calculate

the numerical values of the fields scattered by a great number of perfectly

conducting bodies. Because the justification for using the method is in

general the intuitive argument given above, the success of the method has

been measured in terms of comparison with experiment or with exact solutions,

when they can be found.

The geometric optics solution to (9), given by (ii) implies, in general,

a discontinuity in the current at the boundary between the illuminated and

6



shadow region, called the shadow boundary. When this solution is inserted in-

to the integral (_), the evaluation of the integral may sometimes be accom-

plished by an integration by parts in which the values of J(_) at the shadow

boundary appear explicitly. _len the curve orthogonal to The shadow boundary

has finite curvature, such as in the case of the sphere, this contribution is

spurious. In the case in Which the shadow boundary has infinite curvature,

as with a flat plate, or a_ infinite plane with a hole, the solution (ll) does

not take into account edge currents.

?in the case of the curve orthogonal to the shadow boundary having finite

curvature the work of Pock gives a rigorous criterion for the use of the cur-

rent (ii) in the evaluation of (4). in a joint paper with M. Leontovitch

[Journal. of Physics, X, 13 ([9$6)] and in the paper referred to above, he

established that the value of J(r), in fact, varied co_ti,_uousl.._ ._ y from ap_roxi-

mately its geometric optics vaTue in the ill_zminated region to approximatei.y

its zero value in the shadow region; the variation taking place in the _.enom-
bra region, a region of width

3JA R 2d _-- 0 (12)

Where R is the radius of curvature of the geodesic in the direction of the
propaga_ior, w_ctor as :it crosses the shadow boundary (see Figure 2)

J_(_) _ geometric optics value

o

penumbra region

Figure 2

In the case of a sphere, for example, with R = a, the width of the

penumbra region is o

d= _ a

a2 (____.)I/3Thus, the area of the penumbra ~ 2 _ . Because the magnitude of

the geometric optics current does not depend upon k, this shows that the
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field computed by means of the physical optics integral is related to the true

field by a relationship

: H(s)(7) Physical [i + O([ka]-i/3)], (13)H(s)(_)Irrue Optics

where O(x) is a function which, when multiplied by x, remains bounded as

X_o

In general, for a perfectly conductin_ body, the erzor incurred in using

that this is an uB_er bound on the error.

It should further be observed that this criterion for the use of physical

optics is less restrictive than the intuitive criterion stated above. IT

only requires _lat the numbers ka be large at the shadow boundary and not

necessarily at all points in the illuminated region. .The work of Fock refers,

strictly_ only to convex bodies. For such bodies it is rigorously true that

for plane wave incidence the physical optics field will be in error as de-

scribed above. In a later paper, [ZET_____'_20, 961-978 (1990)] this result was

generalized to include incident fields of spherical type.

In the work performed by Conductron in the present phase_ two models of
the Echo !i balloon have been considered. The first is that of a convex body

determined by various materials studies° To this model the above discussion

applies. The second model is that of a "perturbed" sphere: namely, a surface

having the equation:

x = [a + _(8, q0)] sin 8 cos q0

y = [a + _(8; _)] sin 8 sin q0

z = [a + _(e, qo)] cos e , 0 < 0 < _, 0 < qo < 2_,

in which << a.

The values of 6(8_ _) were obtained from photogrammetric measurements per-

formed during the Static Inflation Tests.

Although the theory of statistically rough surfaces has been studied

extensively_ and the statistics of the balloon surface could be obtained by

measurement of the values of _(8, _), the answers to questions about statis-

tically rough surfaces are statistical answers. Since not just the statis-

tics of 6(8, _) was known_ but 6(e_ _) itself was known, it was felt that a

better result than a statistical one could be obtained° Therefore it was

decided to attempt to extend the work of Fock to find conditions under which

the use of the physical optics integral could be justified for the surface

(i$)o It was conjectured that if the principal radii of curvature remained

large in comparison to the wavelength_ and if except for points in the
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penumbra region no shadows for geometric rays existed, that the physical
optics solution could be used. This conjecture was verified and is included

as Appendix E.

2.4 THE PHYSICAL OPTICS INTEGRAL

If J(_) is taken to be the geometric optics solution, (ii), and if H (i)

is a linearly polarized plane wave, then the physical optics integral ca_
be written:

H(s)(7)
1 // < h _ P} { iklr - ' - I}= - --2_ (rl)x x (7- _l) _ _l

S I_ 7113

e e dS(_l)

where the integration is extended over the illuminated region.
unit vector and let r = R _*. Then

Let _* be a

lim R e-ikR H(S)(R _)

R-_oo

- (n(rl) X _) X G* e o "_1 -+2_ dS(rz) (15)

If u*= _ , so that the field is being observed in the backscattered direc-
O _

tion, because G° • p = 0, (15) has the simplified representation

lim R e-ikR H (s) (R _ )
-- O

R_

2_ (_ (r 1) _ _ e o "71 dS(_l) .

2.5 THE RADAR CROSS SECTION

For a spherical wave, and in the units chosen; the power flux in the

direction of propagation is IHI2. [See Stratton; p. 497] If an incident

plane wave;

-ik_o'7.
H (i) = A e p

illuminates a body and if H(S)(_), a spherical wave is the scattered field,

then the quantity

R2 iH(S 12lim 4 _ )(Ru_,)
R_ A 2



is called the bistatic radar cross section; _(_ , _*)_ of the scatterer.

Physically, it represents the power radiated pet unit solid angle in the

direction _* as compared to the power incident upon the scatterer. It

obviously has the dimensions of area, and when _* = _ , it is called the

back-scattered cross section_ or the echo area Tf o _(s)(7 ) is given by

the physical optics integral_ the cross section is

7f[ -ik[ ,2=-- )
_,.o.,_ , _ n(rl) × _l ) × _*] e dS_r 1

1.0



:3. BALLOON blAI'glilAL8STUDY AND

POSTULATED BALLOON STRUCTIIRI;

Conductron was provided, by NASA_ with copies of the following reports:

A) "Structural Analysis of Echo II to Predict the Surface Configura-

tion", Final Report NAS 5-2365, January 1963, Fairchild Stratos
Corporation.

B) "Structural Analysis of Echo II", Interim Report No. i, NAS 5-3229,
May 1963, Astro Research Corporation.

Our objectivej in this part of the program, was two-fold:

(a) To postulate a balloon structure consistent wi_1 the analyses and
predictions made in A) and B) and to perform theoretical calculations to
determine the radar cross-section of this structure.

(b) To provide NASA with a critical evaluation of the reports A) and B).

3.1 THE BALLOON STRUCTURE

The Echo II balloon is constructed of 106 nominally identical gores of a

three layer laminate, the outer layers being aluminum_ the inner layer mylar.

These gores are initially cut from a flat sheet, and are joined together by

taped seams. The polar regions are covered by "polar caps" of the balloon

material. In the operational balloon_ four gores (two diametrically opposite

pairs of adjacent gores) are reinforced to support telemetry equipment.

These reinforced gores are not considered in the present discussion.

Figure 3 (Not Scale)

ii
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Figure 3 illustrates the configuration of a typical gore relative to the polar

caps and the nominal spherical shape.

Figure 4

Figure 4 illustrates a typical latitudinal section corresponding to the

dotted curve in Figure 3. The dots represent the seams.

The mathematical model chosen for each gore can be described in terms

of Figure 5.

C

0 B

A

Figure 5

The figure represents the gore in the upper hemisphere. The gore it-

self is bounded by the arcs AC, BC, and the arc AB is in the equatorial

plane. The ares AC, BC are circular arcs having the radius, a, of the nomi-

nal sphere (a = 67.5 ft). The points P and P' have the same height above the

equatorial plane. The plane determined by POP' intersects the surface of the

gore in a curve PP' This arc PP' is a circular segment with a radius R

Which is independent of the height of P and P' above the equatorial plane.

The orthogonal trajectories to the arcs PP' are a family of circular arcs of

which the arcs AC, BC, and CD are particular members. The radii of these

circular arcs are, in general_ different for different members of the family.

The contrary is true only when the gore is a spherical segment. However,

the largest possible value of this radius is a, and the smallest possible

value is the perpendicular distance from O to the chord AB. The angle

360o _ .4° corresponding to the fact that there are 106 gores.
A0B = i--0_ = 3 ,

12
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The value of R varies from R = a to R = _. This last value is the

limiting case in which the "arcs" PP' become straight lines, and the gore is

"flat". The selection of R was made by using the conclusions of report B)

referred to above. The contours predicted in that report were actually fitted

better by parabolas than by circles, but the radius of curvature along the

parabola did not vary enough to effec% numerically, the assumption that it
was, in fact, constant.

The calculations were submitted to NASA in the form of a technical

repor% and is included as Appendix A of the present report.

3.2 MATERIAL BEHAVIOR ANALYSIS

The purpose of the analysis in report A) was to "predict the surface

configuration of the satellite when the internal pressure differential has

been increased to various levels and reduced to zero pressure differentiated
in a zero-g field."

This analysis depended first upon performing experiments to obtain the

stress-strain curve for the material by experimental tests, and to determine

the elastic modulus and the inelastic range. Using this data_ a typical

gore configuration was analyzed using membrane theory.

In Appendix B is found the Conductron discussion of the Fairchild

Stratos Report. The principal issue taken by Conductron with this report is

the failure to take into account the boundary layer analysis required in the

neighborhood of the seams. Technically, this failure consists of neglecting,

in the relevant differential equations those terms containing higher powers

of t, where t is the skin thickness, and the linearization of the equations.

To illustrate the effect of this over-simplification_ in Section B.3 of

Appendix B, the analogous problem for a cylindrical, rather than a spherical

stracture, is investigated. The choice of this problem was not based on any

direct relevance of the solution to the Echo II satellite, but to illustrate,

in a case in which the analysis can be completely performed_ the effect of

linearization of the equations and neglect of the higher order terms.

The purpose of report B) was to predict the "departure of satellite

skin from spherical shape" by applying analysis to experimental data. The
Conductron discussion of the Astro Report is contained in Appendix C. The

principal disagreement of Conductron with this report is its assumption,

in considering the displacement of the balloon from its nominal spherical

configuration, that material points move only in the radial direction.

Other disagreements can be found and are explicitly stated in Appendix C,

but this principal disagreement is crucial. In this appendix, an analysis

is performed in which the displacements and membrane forces are computed.

it is shown that the meridional curves are not circles, as predicted by the

Astro report, but that they are "flattened", and the amount of flattening

is explicitly determined.

13
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4. STATIC INFLATION TESTS

During the months of July and August three Echo II balloons_ Nos. 9, iI,

and 13_ were inflated within the large dirigible hangar at Lakehurst NAS.

Conductron performed radar cross section measurements on the three balloons

and submitted Technical Report No. 0038-4-T to NASA describing the measure-

ment program and the data reduction. This technical report is included here-

in as Appendix D.

Figure 6 is a scale drawing of the measurement configuration as viewed

from above. The balloon is represented by the circle with center at O. The

T_ is a circular arc subtending the angle TL O TR = 30 °. This arcarc TL
represents a platform elevated approximately 50'. On elther e_d of the plat-

form are mounted transmitting antennas at T_ and T. aligned to propagate in
. . - - . _< L . .

the dlrectlon TR O and TL O, respectlvely. The recelvlng antenna moves along
the track, aligned always to point at O_ and the measurement is bistatic_ the

bistatic angle being T_OR or T. OR dependent upon which transmitter is acti-

vated. The plane TLTR_ is IO°Lbelow the equatorial plane. The frequencies
used were 1.31 KMC, 5.89 KMC_ 5.65 KMC. A description of the measurement

sequence and calibration is given in Appendix D.

4.1 EXPER_4ENT DESIGN

The first fact to be recognized in planning the measurements was that

in no way could measurements be performed in the far zone of the sphere.

The results of Appendix A show that the field contribution of the scattering

by at least three adjacent gores are necessary t_ _e the correct radar
cross-section. The width across these gores is _i0 meters; consequently_

at C band thel_ar zone of the sphere is defined by a range which is much

greater than _ _ 200 meters.

However, previous work by V. H. Weston [Trans. IRE, PGAP, AP-7, 43-91

(1959)]_ had shown that for spheres whose diameter is large in comparison to

wavelength_ the near zone field can easily be computed. Although this fact

was initially obtained for plane wave incidenc% it was found_ using essen-

tially different methbds; to be valid equally for spherical wave incidence.

The derivation is included as Section D.7 of Appendix D. Using the formulas

therein_ it was then possible to derive the fact that at a measurement range
of IOO ft. from the surface of the balloon_ the measured cross-section should

be increased by 4.5 db to obtain the far-field radar cross section. This

derivation appears in Section D.3.

The decision to use the measuring range of IO0 ft. was a compromise

involving several factors. For several reasons it was decided to use CW

transmissions: it was economical_ simple to maintain_ and spectrally pure.

Although there was no reason to anticipate dispersion problems, there was

good reason to preclude them. Because of the low power (.5 - 1 w) of the

14
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CW system, it was desirable to bring the system as close to the balloon as

possible, to increase system sensitivity. Simultaneously, it was desirable

to remain in the far field of the antennas, which were standard gain horns.

After verifying_ during the hangar background measurements described in D.2

that in the region indicated by the arc T_T_ in Figure 6 the background
K

levels were 20-30 db below the nominal ba_loon return, the I00 ft. distance

was chosen to meet these demands. Using this range made it relatively easy

to provide under-illumination of 12 db at the edge of the balloon, reducing

the power in such unwanted reflection paths indicated by the arrowed lines in

Figure 6.

Having selected the measurement configuration another question had to

be dealt with. For a typical bistatic transmission the boresight of the

antenna located at TR, for example, would be aligned along the path T_O.K
For the receiving antenna located at R, the main contribution to the received

field is caused by the illumination in the neighborhood of the point P indi-

cated on Figure 6, where the angles OT_P and OR]? are equal. For the rangeK

chosen, the angle OTRP is sufficiently large so that the effect of beam taper
must be taken into account. The data correction necessary to account for this

effect is described in D.3.

It was necessary to design a measurement sequence and arrange the instru-

mentation so that a maximum amount of data could be obtained during the time

available. This time was limited by the capability of maintaining a given

inflation level. The measurement sequence has already been referred to.

Figure 7 is a block diagram of the measurement system.

4.2 THE DATA

Although Balloon No. 13 was designated as the prime data balloon, data

was also obtained for Balloons No. 9 and No. ii. Typical raw data is given

in D.6. A single recording represents a change in bistatic angle of 30 °,

which corresponds to a measurement of 15 ° of the balloon surface. Two pat-

terns at the same frequency, pressure, and polarization but marked TRANSMIT

LEFT and TRANSMIT RIGHT respectively, correspond, together, of a measurement

of 30 ° of the balloon surface.

Given a fixed angular interval, the basic parameters sought were the
mean cross-section and some measure of the scintillation about the mean cross-

section. From the point of view of the eventual utilization of the balloon

as a communications satellite, the ideal parameters would be the mean value

of IHI 2 and the standard deviation of this quantity about its mean. To com-

pute these values, however, would require a conversion of the data, which is,

in its raw form_ on a decibel, or logarithmic, scale. Since, in this experi-

ment, the major concern was to relate the radar cross-section in a systematic

fashion to the variables of frequency, polarization, and inflation pressure

(or more precisely--inflation history) it was felt that no advantage was to

be obtained by making this conversion. It was also felt that if sufficiently

small angular intervals were chosen, the maximum variation, in decibels, of

16
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the cross-section over that interval would be an adequate measure of scintil-

lation properties.

For this reason it was decided to subdivide the 300 of measured surface

into six 5 ° intervals. The mean value of the cross-section of the raw data

on each interval was measured, using a planimeter. The near zone correction

of 4.5 db was then added; as well as the antenna beam taper correction_ which

for intervals of this size, was regarded as being constant. The mean was

then recorded, in db relative to the nominal cross-section of the balloon.

The maximum variation in cross-section for each 5 ° interval was recorded

directly from the raw data.

The results are tabulated in Tables D-l, D-2, and D-3, in Appendix D.

I%_e most obvious and striking feature of these tables is the difference in

the scintillation level of the side of the balloon containing the reinforced

gores for Balloons ii and 9 on the one hand_ and Balloon No. 13_ on the

other. This is shown by examining the + columns under "O", "5"_ and "iO"

for the Nos. ii and 13 balloon; and the-± column under "15", "20", and "25"

for the No. 9 balloon.

At first glance there seems to be no significant difference in the scin-

tillation level between the measurements at horizontal and vertical polariza-

tion. Using Table D-3; for the prime data balloon No. 13, a distribution

histogram for the 42 entries was tabulated for the value of the function

iO log _V, at both L-band and C-band. These histograms are given in Figure

8 and Figure 9.

The C-band distribution (Figure 8) has a mean -.5 db; and is skewed to

the negative side. This indicates or is at least consistent with; the hypoth-

sis that at C-band the scintillation level at vertical polarization is either

negligibly different or slightly ]es s than the scintillation level at horizon-

tal polarization.

The L-band distribution (Figure 9) has a mean + .25 db, and exhibits

little or no skewness. This indicates, or is at least consistent with, the

hypothesis that at L-band there is no difference between the scintillation

levels at horizontal and at vertical polarizations°

These results indicate that whatever feature of the balloon is creating

scintillations about the mean cross-section; it is insensitive to polariza-

tion. When one looks casually at the balloon_ one sees large numbers of

horizontal creases and ridges radiating from the seams. If these creases

have any effect on the cross section; it would be in terms of scintillation

effects, since their structure and placement is not regular. The very slight

sensitivity at C-band to polarization indicates that these creases have a

small; but negligibly small; effect on the cross section.

To describe the effect of inflation history on the gore, the 'rabies D-4

and D-5 were compiled. From these tables it is apparent that once the

18
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balloon has been inflated, the pressure history does not have significant

effect on the mean cross-section value. On the other hand; increasing the

pressure seems slightly to decrease the scintillation level, and except for

one discrepancy (Table D-9, CH, at final relaxation)_ after relaxation from
7400 psi, there is less scint111ation than after relaxation from 4800 psi;

in turn, after relaxation from $800 psi there is less scintillation than

during the initial relaxed condition.

Dividing the numbers in the "m - Summed over other gores" (Table D-4)

by 9 is equivalent to finding the mean cross section of the balloon over all

the non-reinforced gores. Although the resultant numbers are, with few

exceptions between i I, nevertheless Table D-3 indicates large variations in

the mean value from between one 9 ° strip to another. This indicated a need

to study the reflectivity patterns on a larger scale to determine effects that
would not be observed by breaking the analysis into 9 ° sections.

For this purpose, four patterns were selected, all from the non-reinforced

side of the balloon. Their descriptions are these.

Pattern Pressure

Number Level Polarization Frequency

363 4800 (Relaxed) H L

367 48OO (Relaxed) H C

389 74OO (Relaxed) V L

389 7400 (Relaxed) V C

For each pattern the corrected cross section value in db relative to the

nominal value was recorded at lO-minute intervals, giving a total of 180

points for the 30 ° scale. Calling the ordered sequence of points f(n),

n = i, 2_ ... 180, the normalized correlation function

N-n

_. fj+n f"J

C(n) -- j:lN-n N , N: 180

j =i j =n

was computed. The resulting autocorrelation function was plotted for
i0' < .8< 15 ° i0', the autocorrelation of the truncated sequence being

regarded-as meaningless for larger values of 8. The results are given

in Figure i0. It is clear that the principal parameter to which the auto-

correlation curve is sensitive is frequency. At C-band there is a well-

defined autocorrelation peak at ~ 5 ° and another at _ i0 °. This corres-

ponds to _ 2.90 and 5 ° on the balloon. If one examines Figure A-ll and

Figure A-12, in Appendix A, which correspond, respectively_ to (;-band at

4000 and 7000 psi, one finds deep nulls, for the equatorial plane, approxi-

mately 1.7 ° apart at 7000 psi and just a peak at the center of the pattern,

20
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• o

or equlvalently nulls 3.4 apart at $O00oPSi. Returning to Figure i0, one
finds a peak for the 7800 R curve at 1.7 which does not occur for the

4800 R curve. Thus_ the model balloon structure postulated in Appendix A

is capable of predicting certain autocorrelation peaks in the radar data_

and should be regarded as basically a correct model for the structure of
the balloon.
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5. THE PHOTOGRAMMETRIC MEASUREMENTS

Conductron was supplied, by NASA, photogrammetric measurements of the

Echc II balloon taken during the Static Inflation Tests. These measurements

were made at several stations meridionally opposite to the side of the bal-

loon on which the radar measurements were being performed. One station

covered two unreinforced gores (gores 102 and 103), the other covered two

reinforced go[es (gores 106 and i). The pressure levels were 2800_ 4800_
and 7400 psi. The measurements were first re-reduced to a form which

defined the surface to be a perturbed sphere as defined by Equation 14. In

Appendix F the results of this reduction are presented, a discussion of the

topography as a function of inflation pressure is given_ and a method of

computation of the physical optics integral is presented. It was felt that

although this method would be satisfactory for rough estimates_ to obtain

the desired accuracy, numerical computation of the physical optics integral

was required. The analysis which preceded the numerical computations_ as

well as the results are given in Appendix G. 2 The curves obtained are given

in Figures ll_ 12_ 13 and 14. All the figures indicate a variation in radar

aspect of 20 ° • Figures II and 13 describe the unreinforced gores. Figures

12 and 14 describe the reinforced gores.

From Tables D-4 and G-2 we can make the following comparison between

the cross-sections computed via the photogrammetric measurements and the

cross-sections that were measu-'-_edby the radar. Let (_) designate the mean

cross-section for the unreinforced section (relative to nominal sphere)

f = 5.85 KMC

<o> <_> Difference

Photogrammetric Measured PSI in (_)

2.35 - 1.25 2800 3.55
- 1.24 .2 4800 - 1.44

- 0.76 - .6 7400 - .16

iThe photogrammetric data at these levels was adequate to perform the

analysis. Data at other levels was supplied_ but had too many blank

spots for adequate analysis.

2The numerical computation consisted, basically_ of representing the

physical optics integral as a sum; the choice of grid size was 6 inches

(the number b defined on page G-4). This choice was to assure accuracy

of t.75 db in the radar cross-section. The computer program was formu-

lated to ensure a round-off error of less than .25 db; the computed

results are therefore accurate to within 1 db. See Appendix G for a

more complete discussion of this point.
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The discrepancy between these values becomes less as the pressure is in-

creased° This indicates, as might be expected, that as the pressure increases,

the basic shape of the balloon (a smooth convex surface) becomes more repeat:

able as one moves around the balloon, so that the mean cross-sections measured

over different parts of the balloon (at the same latitude) become more inde-

pendent of longitude.

From Figure 12 the values of successive peak-peak scintillations was

computed and weighted according to the angular distance between successive

peaks; that is, the vertical distance (in db) between an adjacent maximum

and minimum was multiplied by the horizontal distance (in angle) between them;

these numbers were added and divided by the total angle, giving a weighted

average= These weighted averages were computed and designated (i). From

Table D-9 the corresponding (±) were computed by dividing the sums for the

unreinforced gores by 5:

f = 5.85 KMC

<±> <±>
Photogrammetric Measured PSI

5.2 5.4 2800

5.6 4.8 48OO

4.6 4.9 7400

It is seen that the scintillation obtained by the calculation of the field

from photogrammetric measurements on one side of the balloon does not signi-

ficantly differ from the scintillation obtained by the radar measurements on

the other side of the balloon.
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6. RELATIONSHIP TO PHASE "A" PROGRAM

in the first phase of the program 12 ft. circular segments of Echo II

material were mounted on a support structure_ and the radar cross-section

measured at the Conductron Radar Range. The details of that phase have been

reported previously [Conduetron Report O038-A-F].

in the first phase program two basic problems were encountered.

Conductron's mechanical analysis showed that the balloon segment; when

mounted on the support structure_ would assume the same configuration_ for

a given pressure level; as it would in the fu]llscale balloon_ except for
an annular region extending inwards about 2 ft. i from the rim of the

"mounting ring"; to Which the segment was attached (see Figure i[9).

Region

Mounting

Ring

Flange

Figure 19

This left at the high pressures_ only an 8 ft. diameter sector whose mechani-

cal behavior was the same as it would be on the full scale balloon.

lat the higher pressures. At lower pressures the width of this annulus

decreases; according to the formula d =_-_-- ;R; where e is circumferential

strain and R is the segment radius.

29



The second problem was the electrical effect of the flange. The original

specification for the flange was that its cross-section be at least 20 db
below the nominal return from the balloon. The flange was designed (see

Figure 16) to have an elliptical shape and it was predicted to have the

desired cross-section.

_4--- 12'

C b
15 ' --

Figure 16 Cross Section of a Flange

During the measurement program, contour measurements were made on the

segment, producing topographical maps similar to those found in Appendix F.

However, the grid size on these maps precluded an exact calculation of the

physical optics integral; at this stage of the investigation; it was nol

feasible to instrument precise contour measurements. The maps were therefore

used to compute radii of curvature, and the predicted cross-section, on the

basis of specular scattering theory, was found to be essentially constant.

However, the cross-section data at C-band had a 5-6 db scintillation

level, and on this basis it was assumed that the mounting flange was inter-

fering with the measurement, and that the radar cross-section of the flange

was between 14 and 18 db below the nominal level of the balloon, rather

than the 20 db value for which it had been designed. It is now clear that

the 5-6 db scintillation level, which was independent of inflation history,

is exactly what would have been predicted on the basis of the second phase

program, and that more accurate contour measurements would have revealed

this during the first phase program. This also indicates that the flange

design had actually met its specifications.

At the conclusion of the first phase of the program, it was felt that

the segment measurement techniques could reliably predict the mean cross-

section of the balloon as a function of the balloon inflation history.

Upon re-examining the first phase measurement program it is seen that both
cross-section and scintillation levels are the same as have been consis-

tently found in the Static Inflation Tests.

In the evolution of this program, it has become apparent that in addi-

tion to mean radar cross-section and scintillation level, a significant

quantity which can be related to the inflation history and to the frequency

is the autocorrelation function. On the basis of the work reported in

Appendix A, it is seen that for this particular description of balloon be-

havior, measurements which include at least a three gore sector must be

performed. Because in the first phase, the effectively 8 ft. diameter seg-

ment (at high pressures) was less, in width, than the three gores advisable

3O
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the first phase work must be regarded as inadequate only to predict the auto-

correlation data for the full scale balloon. In continuation of this work_

it is planned to use a larger balloon segment.
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7. SUMMARY AND CONCLUSIONS

The model we have developed for the Echo II balloon is a smooth convex

body upon which is superimposed a small surface perturbation. This smooth

convex body can itself be regarded as a small perturbation from a sphere

(see Figure 17).

Sphere

(
Smooth Convex Body Echo II

(Appendix A) (Appendix F)

Figure 17

This final configuration, of course, can be regarded as a perturba-

tion on the original sphere, but it is important to have at hand the smooth

convex body model and the small perturbation model, dependent upon what
effects are critical.

The systematic changes in the radar cross-section as the illuminating

beam moves around the balloon is predicted from the smooth convex body. If

the gores are identical, the field contributions from three gores are ade-

quate to determine the radar cross-section. This model can be used to pre-

dict the autocorrelation peaks of cross-section as a function of viewing

angle.

The methods of physical optics are adequate to describe the perturba-

tion model. In particular, the scintillation levels are in close agreement

with experiment.

Although the model developed in Appendix A is predictive of the auto-

correlation peaks, the mean cross-sections and peak-peak scintillations for

that model differ significantly from the values obtained in the Phase A

segment measurements and the static inflation tests. This means that al-

though the basic geometry is correct, the numerical values of the parameters

determined by the mechanical analyses provided Conductron by NASA are in-

correct. The fact that the model was predictive of the autocorrelation peaks

32



" Conduct,onCm.poration

means that the latitudinal radius of curvature estimate was correct. Because

the mean cross-sections computed from the model are uniformly higher than

those observed on Echo II, the longitudinal radius of curvature for=the model

is too large. The balloon "flattening" effect derived in Appendix C would

cause a reduction in this radius of curvature in the equatorial region, and

thereby account for the discrepancy between computed and measured values of
the cross section.

It is planned, in the near future, to conduct some more segment measure-

ments at the Conductron Radar Range and another Static Inflation Test. The

segments will be sufficiently large so that the resultant scattered field of

at least three gores will be obtained. The data will then be used to predict

the results of the static inflation test, on the basis of the work performed

in the present phase. This will serve both as a verification of the theories

and techniques developed, so far_ in this program and a demonstration of an

effective tool to predict satellite radar performance.
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APPENDIX A

A.I INTRODUCTION

This report consists of the theoretical calculation of the scattering

properties of a hypothesized perfectly conducting geometric configuration.

The configuration consists of 106 gores and two end panels, arranged, in

the fashion of the Echo II balloons, to form a nominal sphere of radius

a = 20.6 meters. The exact shape of these gores was to be determined by

using data given in two reports:

"Structural Analysis of Echo I! to Predict the Surface Configura-

tions_" Fairchild Stratos Corporation_ Final Report, Contract
NAS-5-2365, January 1963, and

"Structural Analysis of Echo II," Astro Research Corporation,

Interim Report No. i, NAS 9-3229, May 1963.

The emerging hypothecated geometry is the following: If one sgays

away from the polar caps, which are not studied in these reports, each gore

can be represented by two coordinates (SI, $2) , SI representing distance
along the gore in the longitudinal direction, S_ representing distance along

the gore in a direction orthogonal to the longi_udinal direction. (see
Figure A-I)

Figure A-I

The curves S = constant are plane curves, the planes being mutually ortho-
gonal, and _e normal to the surface at the intersection of two such curves

is orthogonal to the plane of their tangent vectors.

For fixed SI, the form of the resulting curve was obtained from the
data in the above mentioned reports, and depended_ of course_ on the assumed

surface stress. The surface stresses chosen were 500_ 4000_ 7000, and
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12,000 psi. These stresses correspond, respectively, to surface forces of

.18_ 1.44_ 2.52, and 4.32 ib/in. The Astro Data; taken at forces of 1.72_

2.66, 4.05 ib/in was extrapolated graphically to obtain the data correspond-

ing to the forces we had chosen.

It was found that the corresponding curves could be fit with a parabola_

of very nearly constant curvature; the corresponding mathematical representa-

tion was chosen to be a circular arc of radius A_ where the ratio 7 = = had
a

the values 22, 3_ 1.7; i_ corresponding to the given pressures.

In Section A.2 below, we derive the formulas to be used to find the

scattering cross section of this idealized structur% and in Section A.3 we

find numerically the cross-section for values of 7, 7 = _ 7 = 3_ 7 = 1.7.

We do not bother with 7 = I, for this is the perfect sphere. It shall be

seen that the solution is in the form of a Fresnel integral_ and it is ele-

mentary to see; from the asymptotic form of the integral, that 7 = _ is a

valid approximation for 7 : 22. The scattering considered is bistatic_ the

transmitter being in the direction of the unit vector _T_ the receiver in

the direction of the unit vector _R'

It is a temptation to use, a priori_ the bistatic theorem_ which re-

places the problem of bistatic scattering with the problem of monostatic

scattering, in the direction

= i (_T + _R )_
o 2 cos B

where the bistatic angle_ 2_, is defined by

cos 2 _ = _r " _R"

This theorem is an exact theorem, but it does not apply to bodies with dis-

continuous tangent planes or edges;2_urt_er , it is a limit theorem_ being

a statement of what happens as k : A c

Since we shall deal here with two frequencies f : 1.71 KMC and f =

5.85 KMC, the second condition does not apply; the trouble is that the

Fresnel integrals involved; except in the case of 7 = _, are not close

enough to their limiting forms. The first condition is intrinsically more

serious, however. For bistatic (6 _ O) scattering_ there is a cross-polari-

zation term_ which is not present in monostatic scattering.

Fortunately; the errors introduced by replacing the bistatic by the

monostatic problem are proportional to sin _ and to sin 9o , where 9 ° is a
parameter, to be described later which is small. The errors turn out to

be negligible, in terms if the criterion that if the field quantities are

represented in the form H(l + 5), then 151 must be less than .08. This

criterion guarantees accuracy in the cross-section of i i db. In the

following section_ approximations will be made to simplify the relevant

calculations. These approximations have to do with discarding terms which

are proportional to either product sin 9o sin _ or _ = the resulting
errors total less than the required .08. o _ ;
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In Section A.3 we evaluate the relevant integral, and obtain graphs of

the cross section as one moves across a gore. These results are valid for

any bistatic angle, 2 6, < 300, and have been computed for azimuth angles for

A.2 SCATTERING BY A GORE

Let the gore have the equation,

_ Sl, S2=r( ),

where S., j = i, 2 are the arc lengths of the orthogonal coordinate curves°

The ful{ variation of SI is the longitudinal perimeter of the gore, which
is approximately _ a; for each S_, S_ varies over the interval _ _, S ,

in which S, of course, depends on S]. The coordinate curves are p_ane

curves, having the unit tangent vectors,

A

T. (SI, S2) = _S (SI' $2)' j = I, 23
J

and have curvatures K., which will be assumed to be constant and having the

valuesia,} ,whereAC>a.  renet-Seretfo ulasare
_. _
_. : - K.<j _.:+Kj 3 73' j:l, 2

3

and

A

= T 2 X T 1.

To compute the scattered field, it is assumed that the currents induced

by the incident field are given by the physical optics approximation, valid

for large a_

- 2 _(i) x _,

where H _i) is the incident magnetic field. The transmitter will be assumed

to be located in the direction of the unit vector ^m. and the receiver in

the direction of the unit vector _R" The bistaticU_ngle 2 6, is defined by

cos 2 _ = _R " _T'

and the unit vector Q is defined by
o

( aT)1 ^ + .
= u R_o 2 cos

The polarization of the incident field i_ _iven by the unit vector _,

where 9 • _T = O. Then the scattered field _[s] is given by the physical
optics formula. The normalized scattered field, _ defined by

_ R2 -ikR _(s)H = 4 _ e ,
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is then_ for large R, described by

_G "r-2ikcos o

= ikff_ _ e (£x#) xGRdS,

the integral being extended over the illuminated portion of the gore.

Because there is always a value of SI for which G " _S : O_ the above
integral can be evaluated by regarding it as an iterated int_gral_ and inte-

grating first with respect to S1 by the method of stationary phase (justified
because ka is >> I)_ we obtain

_s _2ikcos_GO.7(:s[,s2)

[ _ ie_i/4J ka 7 2 [ecos_ dS2 :,4: • __(sI, %)
S o -

2

[_, (s_,%)x _]x %]

S[ is the point for which Go • re_] (S_*,£Sp) : O, and is independent, of S_.2

Hence we can regard S_ as a constant zn tee evaluation of the integral. The
geometry of the curve

r = S _

is demonstrated in Figure A-2.

S2 -

_(o)

S S
2 2=_

Figure A-2

A

Figure A-3
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The vector _ lies in the plane of the curve (because ^ ^u • T_ = 0),

which is an arc o9 a circle with radius A. In Figure A-3, t_e relationship

of this circl_ to the radius of the nominal sphere, a, and the angle c_ is
" where 8 is the aximuth angle of _ . [8 = -

shown. _ = 106^ sin 8o" o _ . o o 2
corresponds to u ° lying in the equatorial plane. ] gum.erzcal].y,

--= a_]~aC_S A sin -I [2

Now, using the Frenet-Seret formulas, we obtain

.... ? l l _.2_(s2) = r(O) + _l(O, S2 _(0) _'2+2A " " "

'fifo)
_(s2) =_(o) 4_ s2+. . .

From Figure A.-2 it is clear that _ n(O) = cos _o' _
and from Figure A-3, o o

• 91(o) = _i_ %,

a a)] _(o) ~ a _ (o).r(O) = :a oo_ a + i (1- _osZ ._

Therefcre, the integral can be approximated
S

__. _ i e_i'/4# k.acos_ e-2ikae°s_c°s_° _

cc, s_ ° 2
i2kc:os$ [_ e2 " ' ""2 - 2slnlloS2]

tJ

$2cos I/o + -_- sin _o

dS 2

[_(o)+ --
T1()'d

A S2] X # ] X UR

u T
o

Figure A-4

A-5



_on_uclt'on _oeporation

F . . ° A A A
igure A-4 lllustrates the conflguratlon of u , um, and u_. There are

.... O i ^ . .
two independent orlentatlons for the polarlzatlon ygqtor p. T_e flrst is

perpendicular to the plane of the three veetors_ _k±}, corresponding to hori-

zontal electric polarization. For an arbitrary vector Q,

[Qx_(1)]x_R (_R 0)_(1)

which leaves the polarization unchanged. In particular, if 9 = £(0), be-

cause uT lies on a cone of half-angle _ about û O ,

cos _ cos 4o - sin $ sin 4o _ (_R " _o ) _ cos _ cos 4o sin _ sin 4o

If 0 _ _ _ 19 ° and 0 _ 4° _ 7-1/2 ° , we may take

(_R ' _o ) ~ cos _ cos 40,

so that the vector cross product term in the integrand can be replaced by

S2

cos_ cos _o Pl + o (-f).

The other orientation, corresponding to vertical electric polarization
is

_(2) = (Ginx _(l)).

For arbitrary _V,

= [(Q • #(1))(_ T X £R) - (Q • £T)(_ (1) X £R)].

The second vector corresponds to vertical electric polarization_ whereas

the..̂first^ corresponds, to,,_-T^X __K = sin 2 _ p_l), a cross, polarization^. term.
if V = n(0_. as above (v . u_) _ cos 9o cos _, a_d since p_ is orthogonal

^ , x • _I)to u° and n(O) makes an angle _o with _o' (Q " ) _ Isi_ _o I'

With this approximation; the cross-product term in the integrand is

+ cos _ cos ,_ (_R x _(1)) + o (SA).
i 2

Now neglecting terms 0(-_) in the slowing varying part of the integrand_i/4
and suppressing the polarization vector_ and suppressing the factor i e
we obtain

-2ikacos#eos_ o

H _ e _acos$cos_ °

ikcos#[--

e

e°s_°A S22 _ 2sin_oS2 ]

S

2

;s
2

dS 2.
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B°For the values O < _ < 19°; O _< ..19oI< 7. , a final approximation, sup-

pressin I the consTant-pha_esSt term:

V- a ik 2,oS dS2'
uS e

2

S S2

Now, letting _ = a _, _ = -_, and defining

A
7 = _ (7_>_1),

we obtain

i

22
ika l! _]

__-g J e
- O_

A°3 NUMERICAL DETERMINATION OF THE CROSS-SECTION

We have seen that the normalized field, H, scattered by a single gore

!

is given by

[2

'_" e

- O_

A
where a is the nominal balloon radius, . i_ o ^ o7 = T, and _ =i-A-_ sin e , where e

is the azimuth angle of the vector ^ and _ zs the a_e between u and

the normal to the center of the gor_?' To obtain the field scattering° by

the balloon, as _ "moves across" a gore_ i.e._ - _ < 9 < _ this expres-
• o - o -

szon must be evaluated, not only for this range of values for _o' but also

for the ranges, - B _ < _o < - _' _ < _o < 3 _ etc._ representzng the
returns from adjacent _ores7 the results [in general_ complex) must be

added, and the square of the absolute value of the sum must be compsted to

obtain the balloon cross-section relative to the cross-section of the nomi-

nal sphere.

A.i3.1 "Flat" Gores

The first case to be considered is the one in which the gores are
"flat" or, equivalently, Y = _. Here_ the above expression can be inte-

grated in an elementary fashion_ obtaining:

-" jka (sin (2ka _W°))Wo
a_ ",- 2 T oc 2 ka o_

which is the well-known return from a circular cylinder.

A-?
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The comnutations are elementary. We have performed them at frequencies

1.71 KMC_ 5._5 KMC_ and for values of 8o; _; _; and Z. The results of these

computations are illustrated in Figures A-_; _-6; A-7_ and A-_. The infinite

null observed in the equatorial plane at 5.89 _<MC (Figure A-8) is caused by

the null in the field pattern within the interval - _ < _ < _. Th.e critical

frequency_ below which this does not happen is determined b-y the equation

2 ka OC2 = _,

which for the present case gives f
C

A.3.2 Finite Values of 7

= 3.9 F/_C.

Although the preceding case_ 7 : _ is an extreme limit: we shall see

that the answers obtained are not remarkably different than for relatively

small values of 7. For finite values of 7_ by completing the square of the

quadratic term. in the exponential_ and making the substitution

k_ -- 90 )
z = - 7 ,

the integral can be written as

Let

-ikaTur_ k_.fa(__ 7 9o ) 2

H __ e _ _ diz(oc+ 7 %)

dz.

Then

x=J a7
0

V =_-_ 0_.

_ iz
H _= __27 e e dz,

X+V

in _ieh _e integral is a Fresnel integral. For the _equencies under

consideration and for _e given value of a; _e possible range of values of

V is O < V < 1.5_ and the possible range of values of X is O j X ! _. Using

the we_-kn_wn as_ptotic representation:

x iz2 i eix2F7 e dz i _x

o

it is easy to verify that if V is in the stated rang% the integral becomes

negligible in comparison to its value at X = O, when X _> 5. Because_ given

k, a_ 7 and X_ _o is determined_ this allows one to estimate how many gores
are necessary to take into account to determine the total field. As either

A-8
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7 or k the frequency increases, the maximum number of necessary gores de-

creases° Table A-I has been computed, using standard tables of _:resnel

integrals, correct to the second significant figures, and, with interpola-

tion, can be used to evaluate the fields in question both for the present

values of the parameters and for others.

TABLE A-I

-ix2___ 7 X+V iz 2e - e

X-V

dz

X

V
.2 .4 .6 .8 i i .2 i° 4

0 .32 .64 .94+.12i 1.22+.23i Io44+°48i 1.56+°78i 1.5 +.50i

.2 .32
•4 .61-. 02i

•6 •72+. lOi

•8 .43+. 14i

i .30 .57+.04i .74+.08i .79+.07i .74+.07i

1.2 o44-o6i

1.4 .44-.86i

2 .27+.06i .21+.16i .ii-.12i .Ii-.12i -.48i .16-.18i -o18-°35i

3 .22-.08i .19+.05i -.17 -.36+.04i -.15+.18i -.2 0

4 °19 •12 .i0 0 •20i 0 0

5 -. 01+. 18i 0 0 .14 0 0 0

Using this table, the following values of the field have been computed, for

values of $o/(% indicated.

f = 1.71, y = 1.7

0 I +.I i 0 .7 0 .5

•57 .8,.1 i .57 .7 .57 .5

•94 •8+.1 i 1.35 .7 1.94 .5

1.9 .1+.1 i 2.7 .2+.2 i 3.8 .2+.1 i

2.8 -.2 4 .2 5.8 .2
3.8 .2 5.35 .i 7°7 .2

A-13
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f = 1.71, 7 : 3

0 . +.7 i 0 .7 0 ,4

•33 .8 .33 .7 .33 .4

•71 .8 i .6 1.44 .4

1.42 .l+.l i 2 .3+.1 i 2.4 .4

2.12 0 3 .3 4.25 .3

2.85 .3 4 .I 5.8 .3

f = 5.85, 7 = 1.7

0 1.6+.6 i 0 1.3+.2 i 0 .9+.1 i

•57 .6+.2 i .57 .9+.1 i .57 .7+.1 i

.6 .1-.3 i .72 .8+.I i 1 .7

1.03 -.2+.1 i 1.45 .1-.1 i 2 .1+.1 i

1.55 .i i 2.2 -.4 3 -.2

2.O6 0 2.3 0 4 -.2

3.2 .1 5 0

f = 5.85, y : 3

0 1.8+.4 i 0 1.2+.1 i 0 i

•133 1.2+.3 i .33 i +.1 i .33 .8

.139 I.i+.i i .55 i +.1 i .78 .8

•78 .1-.3 i I.I -.3 1.55 .3+.[ i

1.17 -.4 1.63 .3 2.42 .9

].56 0 2.4 3.1 .1

1.95 .i

Because the fields are complex, to use these tables it is necessary to

consider the real and imaginary parts of the fields separately, but except

for this_ the computation is routine. The results of combining ali signif_-

cant contributions are given in Figures A-9, A-10_ A-If, and A-12. Compari-

son with the results obtained for Y = _ indicates some ehanges_ but qualita-

tively, the results are similar. To see how the f_eld pattern differs from

its limiting form, a comparison between the scattering from a s_ngle gore at

1.71 K_.C, Figure A-5 above, can be made with the scattering at finite F,

Figures A-13, A-14.
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APPENDIX B

B.I INFOP_MATION REGARDING MATERIAL BEHAVIOR

it is obviously necessary to gain a full understanding of the material
behavior of the sandwich-ty_e skin. Within the limited amount of the time

available; it is felt that the Fairchild Stratos Corporation (FSC) has done

an acceptable job. Nevertheless; the data which are presently available

are not only not fully reliable; as pointed out by FSC itself_ but they are
also highly incomplete.

It appears that the balloon is to be inflated in such a way that
plastic (i.e.; permanent) deformations in the balloon take place. Conse-

quently_ as the pressure is being released; it is necessary to understand

the mechanical behavior of the skin during the unloading process. Such

test data are apparently not available at the present time; although it

may be surm,ised that the material will unload elastically. Moreover; in
view of the proposed penetration of the plastic domain; it is necessary
to gain a bett.er insight into the stress-strain law of the skin for dif-

ferent types of loading histories. Also; because some bending does take

place; experimental information should be obtained regarding the response

of the skin to bending moments. It is agreed; however; that shearing
stresses are probably not an isssue.

The report of FSC assumes that; in view of the vastly larger magni-

tude of the modulus of elasticity of aluminum as compared with that of

mylar; all the stresses are taken by the aluminum itself. This certainly

requires experimental verification. Furthermore; it is necessary to gain
information relative to the behavior of the skin after one or more of the

aluminum facings have failed. None of the experimental data described

above require a prohibitive apparatus; it should therefore be possible
to _o_duct such a program locally without undue additional effort. Further

experimental studies may become necessary as the need arises. For example;
in order to minimize the irregularities at the seams; it may be desirable

to reduce the bending stiffness of the splices (rather than to increase

it as the present design seems to require). This could be achieved; for

example; by omitting the inside aluminum facing and; in order to counter-

act this omission; by doubling the outside facing. Other methods are

certainly feasible. In any event; the usefulness of such a step should
be supported by experimental evidence.

In addition; because the inflating process introduces non-elastic

strains and hence an unloading history different from the loading his-

tory; there may result not only residual strains; but also residual stresses.
The average stress in the balloon; after the removal of the internal

pressure 3 will obviously vanish. Nevertheless; local residual stresses

may remain; especially near points of imperfection or discontinuities.

It may therefore be necessary to test the material against the possibility

B-I
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of stress relaxation--a phenomenon whieh_ in time; may bring about a slight

modification of the local irregularities; if not of the overall shape of
the balloon.

B. 2 ANALYSIS

No claim is made that a meaningful, analysis is necessarily simple.

Nevertheless; with realistic simplification; it appears likely that

such an analysis can be undertaken with.in a reasonable effort. Bast-

call.y; the balloon should be analyzed as a sequenc-e of cylindrical

shells (in the shape of the gores) spliced t,Jg_ber at the seams. Such

an analysis; in its pure form; is ey_remely complicated; espeeial].y if

plastic deformations are to be included.

Fortunately 3 the thicM1ess of th_ skin is so mi:_i._ml that it :is

possible to ignore the bending stiffness of the shell. This leads to a

:_m_mbrane" theory of substantially reduced complexity. 'l_.erelevant

equations of this theory are give-_ in Equations B.I to B.9 in Section B.J.

It is noted that Equations B.7 to B.9 contain nor:-l:inear terms in the strain-

displacement relations. Such terms are absolutely essential (and may in

fact become dominant) if the radial displaceme_,_t w is of the same order

as; or larger than; the thickness t of the balloon. It is noted that

these non-linear terms have not been include@ in the a_alysis prepared

by FSC.

The bour_dary conditions governing a representative gore are giw_.n by

Equations B.10 to B.14. Of these; Equations B.lO to B.12 represent symmetry

conditions at the center of the gore. Equation _.].3; at the edge; :is also

due to symmetry; and Equation E.14 represents the fact that the displacement

of the seam must be radial. Since; on the other hand; the system of Equatior:.s

B.I to B.9 can be reduced to a sixth order system involving a stress function

ar,_dthe displacement w; it is necessary t: establish three boundary conditions

far each boundary. Equations B.13 and B.]4 are theref:>re inadequate. An

additional equation is obtained from the eor,_d:itions of equi]ibr:ium; :i.e.; the
resultant force in the radial direction must van:[sh in the seam. !r,_the

absence of any bending stiffness at all; this implies that the balloon

must be smooth (see Equation P_.22 for the simplified case).

This condition is apparently what the FSC report, [:ostulates. Actu-

a_iy while the thickness t of the skin; and _her:c.ethe be ndir.g sti ff__ess
t'; is exceedingly small; it does not vani.sh altogether. It may there-

fore be necessary; in the immediate vicinity of the splice; to take into

consideration the full system of equations; i<clud:iz,_g the effect of the

bending stiffness. The order of the system of equations has now been

raised to eight; the four boundary eond:itio:::s the:__require tb.at; in

addition to Equations B.13 and B.14; the sl.>_,_-,o[ the deflected surface

vanish at the splice and that the splice be iu equilibrium against radial

motion. This condition; again for the simplified problem investigated _n
Q_ _4--.{¢,_, _" ' r-._. • y - /_ ........ _-3; is given in the sec:ond and third _,,f E,:tuatlons B.2o.
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The effect of the finite bending stiffness is likely to be purely

local. In other words_ by employing standard boundary layer techniques;

it is likely that a realistic solution to the problem can be given by a

membrane analysis for the "interior" domain of the balloon and a boundary

layer type analysis along the splices. None of these facts have been

taken into consideration in the FSC report. Moreover, some of the aver-

aging processes employed are not entirely clear. In fact, some of the

connectiqns between the final graphs and the intermediate equations

apparently involve an amount of algebra which; at least at first glance

is not altogether transparent. In any event, the analysis performed by

FSC, while impressive in the light of the time restrictions; appears of
limited relevance.

In Section B.3, a sample computation is attempted for a vastly

simpler problem. In effect, the actual balloon has been replaced by a

cylindrical shell of polygonal cross section similar to the actual cross

section of the balloon at the equator. Such a computation can be carried

out explicitly; the development of a boundary layer can also be shown in

explicit form. It is not to be inferred that these results given have any

quantative application to the problem of the almost spherical shell. How-

ever_ it is felt that, as a demonstration of a simplified approach; some

of the features of the expected computational method can be brought out in
this manner.

B.3 The equations of equilibrium of a typical gore is given by the

fo__owl.=g equations:

N + N = O
xx3x xy,y

(B.I)

N + N = 0
xy_x yy,y

N
YY

N w + 2N w + N w - --= -p
xx _xx xy ,xy YY 'YY R

(B.2)

(B.3)

Zn these equations_ the first two constitute the condition of equilibrium in

the tangent plane and the thiZd the one perpendicular to it. The membrane

forces are Nij , and the deflection perpendicular to the tangent plane is w.
A eomma_ followed by a letter, constitutes parti_l differentiation with re-

spect to the corresponding coordinate. Equations B.I and B.3 are taken

relative to the final configuration, althoggh certain standard approximations

inherent in shell theory have been bade.

The equations relating the membrane forces to the membrane strains e..
are as follows: ij

S-3
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N = K' yy) (B.4)_xx (exx + 9 e

= K'(eyy + v exx ) (K' = Et (B.5)Nyy i - v2

N = K' (i - v) e (B.6)
xy xy

Finally, the strain-displacement relations are given by

= u + i 2
exx ,x _ w (B-7),X

= W yeyy v + v + w ) (B.8),y ,x ,x

in which u and v are, respectively, the displacements in the x and y

directions. It is noted, as already pointed out in the body of this

report, that non-linear terms in the lateral deflection w are retained.

The system of Equations B.I to B.9 involves nine unknown variables:

The three independent membrane forces Ni_ ; the three displacement components
d

u, v, and w; and the three independent membrane strain components el=.
Equations B.I and B.2 imply the existence of a stress function. Equations

B.7 to B.9 imply a compatibility relation among the strains after the

elimination of u and v. When this is substituted in Equations B.3 to B.6,

there result two equations in the stress function and the deflection w

(associated with the name of Foeppl) which are of the sixth order.

The "boundary conditions" at the center of the gore are given by

the symmetry c3nditions IO, Ii, and 12 as follows:

Nxy(O,y ) = 0 (B.IO)

W,x (o,y)= o (B.LL)

u (O,y) = 0 (B.L2)

At the seam, the following two conditions

N = o
xy

(B.13)

u (_,y) = w tan (B.14)

B-4
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imply that_ by symmetry, the shearing stress vanishes and the displacement

is radial. A third condition can be obtained as is discussed in the body

of the report; _ represents half the width of the gore.

In what follows the problem is investigated for the case in which

is a constant (i.e., for a cylindrical vessel). In that case, all references

to the y coordinate may be dropped. It follows, therefore, from Equation
B.I that

N = constant (B.I_)

in which N is employed for N x. In Equation B.3, simplification leads to

_" -- p (B.16)

in which W is emplmyed for the lateral deflection associated with the mem-

brane theory and a prime represents differentiation with respect to the

argument x. In view of Equation B.II and 9.15, Equation B.16 may be integrated
to yield

2
w = A 2--x (B.l?)

2N

in _idch A is a constant of integration.

Wi_h the equivalent of Equations B.4 and B.7, the membrane force N

is expressed in the form

1 ,2)= Et (u' +_w . (B.18)

In view of the boundary condition 12 and Equations B.15 and B.17, the dis-
placement u is obtained as follows:

Nx i

u - Et _ N2 (B.19)

It is noted that the second term on the right side of Equation B.19 is the

result of the non-linear expression in Equation B.18. If it were omitted,

the result _Duld be in serious error, as can be seen below.

Because of the large number of gores, the width of the gore may be

approximated by

= R_ (B.20)

where (z represents half the central angle of the gore. When Equations B.17

and B.19 are substituted in the boundary condition B.14, this leads to the

following relationship (with tan _ replaced by c_):

A : 2 + 1 (B.21)
Et _ N2

B-5
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_Pinally_ to have equilibrium in the radial directionj it is necessary (within

the <:onfines of membrane theory) that the shell be smooth at the joints_

this implies that

w'(_)= - _ @.22)

When this :is substituted in Equatic,n B.i.7_ the et<pected result

"÷ ..... , ir,_ " fur_<:tions of theis obta:i.ued. All constants have now been de_.z_ ...... d as

internal pressure p. In part:icular_ the def]ectior-s at the center of the

g:,re and at the seam are given_ respec.tively_ by

Rc_2
w(0) - +

32 _'r_t"t (B,2_)-
w(_) .---_-+ _-r:t

In these e:rpressions_ the first terms on the right side _._=-_=_,,......,+ the

"buZL_ing" necessary to convert the polygon into a circ].e_ and the secc_nd

the. ex_aRsion due to the internal pressure*.

T_Le et_ia.ctequati,.)ris_ which ta_e aeesunt of the bending stiffnes,_ of

the shell._ should be

Et 3

,___,aii-{_ - foll.ows ::i::._steadof Equation B.16. The boundary .................is read as

_"' (o) = o

w, (_) = o @.26)
E,t3

NC_ 12 w_" (?*) = C

.-f WL.i,<'hthe first and third represent addit:Lonal ,_oT_d:i.t[onsand the se'_or=d

z._p,.ac_, Equation B.22. Ta so].ve this more accurate system_ ft :is eon've.nier..t

to replace the :it_,dependent variable x by z thr:.-<gh

x = _ - _. (s._7)

lr: other words 3 z is measured f:rom the edge iLto the :inter:i.or. A].so_

let

w = W+v (s._8)

* Equation B.25_ coul.d 3 of e.ourse 3 have bee_"_ .%btairLed by far more elemer,:tary

_rocedures. The reason i.n.earryiDg out the present [:r:)eess is to demonstrate

t_.e r:.ecess._ty of including the non-linear te_s in th(-_ _.,_+rai_-disdac_mer,_-[....... ,.

relations.
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in which W is the result of the previous approximate computation.

then that v is governed by

Et3 V"" - Nv" = 0
12

in which the prime now represents a derivative with respect to z.

It follows

(B.29)

An approximate solution to Equation B.29, subject to the previously stated

boundary conditions and the superposition 28, is given by,

a -_z
v - _ e (B.30)

in which the parameter _ is given by

_2 IP_N _ 12e (e t) (B.31)
- Et 3 t 2 = Et

Equation B.30 is only approximate in the sense that it does not satisfy the con-

ditions at the center of the gore exactly. However, the expression Ro_ passes

all bounds for vanishing thickness t. In other words, Equation B.30 repre-

sents an asymptotic solution to the system considered here. It is seen that

for increasing internal pressure the local irregularities decrease both in

magnitude and extent. The analysis given above is based on elastic behavior.

In the presence of plastic yielding it is expected that:the surface becomes
even smoother than indicated here.

The analysis given above demonstrates explicitly the development of a

boundary layer. It is expected that similar behavior will prevail in the

case of the actual shell. In effect, a singular perturbation has been per-

_rmed on the simplified solution. This local behavior is entirely indep-

endent of the width of the gore as well as of the external boundaries (if

any).

!

Figure B-I
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APPENDIX C

C. 1 INTRODUC TION

In the present investigation we are concerned with the reliabilit 7 of the

structural analysis of Echo II contained in a report by the ASTRO Research

Corporation (ARC). This report deals with the deviation from perfect

spherical shape of an Echo II balloon which is constructed by means of a large

number of gores made out of a sandwich-type material (XIg). The ARC report is

entirely predictive, and it is the purpose of the present study to arrive at

an evaluation of these predictions.

The ARC report may reasonably be divided into three sections:

. the predicted shape of the balloon under internal pressure and

under the assumption of perfectly elastic behavior;

o the effect of the pressure relaxation, especially in view of

the assumed irreversible material behavior; and

. an experimental study to establish the material constants used

in the first two sections of the report.

In the second section referred to above, the material is assumed to unload

elastically. Since, according to the ARC report, the unloading characteristic

of the balloon is primarily based on the results of the first seetion_ it

becomes clear that the reliability of the first section is essential for all

subsequent analyses. It is for this reason that the present study concerns

itself primarily with the first section.

,.2 ANALxsIS OF _.NFLAIT_D SHAPE

%be authors of the ARC report have recognized the fact that the problem

of eo:mputing the predicted inflated shape is essentially a non-linear one.

!n its original (that is, uninflated) s tate_ the balloon is composed of a

large nlmmber.of gores, which are cut in such a manner as to form portions of

circular cylinders after assembly. In other words, a parallel of latitude

appears as a polygon rather than as a circular, while the center lines of the

gores appear as circles of radius r o.

In its inflated state the balloon should be spherical, or nearly so. The

authors of the ARC report have attempted to predict the exact shape by first

assuming it to be a perfect sphere and by then applying corrective terms to this

sphere on the basis of the violation of one of the equations of equilibrium.

Apparently assuming this correction to be comparatively small they have

linearized this process; if carried out properly, this appears to be a legitimate

procedure. However, we will show that_ in our opinion, the results of the ARC

report are of questionable validity.
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The ARC report is rather concise, making it necessary at times to guess
as to what the authors had in mind. We have attempted to reconstruct their

apparent _hl k_,:g and computations In particular, if we assume that the

balloon is inflated into a perfect sphere of radius r, then the strains in the
meridional and azimuthal directions are given in Eqs. (i) and (2) of the report.

We have confirmed Eq. (i) but have been unable to confirm Eq. (2). Instead,

according to our calculations, the latter should read

r 2 2 e) l (2')= -- (1 - _ cos
r
o

if only terms up to the second power in M are included. The discrepancy does

not appear serious, however, since the authors' Eq. (2) represents the average

of our Eq. (2') over the width of one gore. It is conceivable (although the

report makes no mention of it) that this was done by the authors to satisfy

one of the equations of equilibrium in the plane tangent of the sphere. The

authors' as well as our own computations are based on the assumption that each

point: on the balloon moves radially outward.

This assumption, of course, is artificial and can only be maintained if

it leads to a system of stresses which are in equilibrium. The authors note

that this is_ in fact, not true and that there exists an imbalance between the

uniform outward pressure and the resisting radial resultant pressure associated

with the meridional and azimuthal membrane forees. They also note a further

imbalance associated with the presumed reinforcement at the seams; however, we

will not pursue this in detail in the present study since it is our belief that

even if the balloon were truly homogeneous the authors' conclusions would be

open to doubt.

If the membrane forces N and N_ are computed on the basis of Eq. (i)

and z_ strains and hence shearing stresses are correctly_)_ az_d if the shearing @ " Y

assumed to vanish, tlnen the equations of equilibrium are violated both in the

radial a_::din the meridional direction. The authors attempt to make allowance
for f_e form_er but:not for i_e latter. It is for this reason that the basic

ass,&npk:io:_of the authors (namely purely radial movement) is actually untenable.

In Section C.9 it is shown that meridional as well as azimuthal movement takes

place and that the final shape of the inflated balloon is not s_herical; but

slightly spheroidal. The authors' analysis, in the absence of the effect of

inhomogeneity at the seams, does not account for this.

So far as the radial imbalance is concerned, the authors assume that this

can be handled by additional radial displacements which are governed by Eqs.
(3) and (4), of which the former is neglected. When this additional radial

movement is expanded in a Fourier series along a parallel of latitude, and

when the load imbalance is similarly expanded, then, by equating the first terms
in 1_e expansions_ the authors arrive at Eq. (9). We have been able to confirm

Eq. (9) only on the assumption that the second term on the right side of Eq. (4)

is neglected. This appears to be a reasonable assumption. Moreover, the authors'
conclusion that 1_e deviation from sphericity does not contain a term which is

quadratic in the width of the gore is confirmed in our own analysis as shown in

the Appendix.
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However, Eq. (9) must be questioned in that it contains the term c in

the denominator. Also, when the second term on the right side of Eq.(4)°is

neglected, the use of a Fourier expansion appears unnecessary since the additional

displacement can then be obtained through direct integration. This also leads

to the predicted "kink" in the final shape as a result of the seam reinforcement.

Finally we are tempted to question the actual quantitative results which,

according to the authors, vary with the fourth power of the width of the gore.

Since the original development of Eqs. (i) and (2) was correct up to only the

second power, the conclusions are believed to be unreliable.

The strains obtained in Eqs. (i) and (2) are somewhat at variance with

the ones derived in Section C._. If, in conformity with the discussion in Sec-

tion q.9, the strain e is assumed to be of the same order of magnitude as

(_/n) _, that is, if o

(/)22c =A, _n
0

then Eq. (2) takes the form

e 2 h 1 2e) ±= ) ( 2 - cos . . .

if again only terms up the second power in _/n are included. In contrast, it

is shown in Sect{QD C.9 that e. is independent of 0 so far as the term involving
(_/n) _ is concerned. Since it _s this variation which forms the basis for the

correction during the unloading process, it appears that the authors' subsequent

developments are without proper foundation.

However, assuming Eq. (6) to hold during unloading, the authors develop

Eqs. (7) and (9) on the basis of Eqs. (i) and (2). We have been unable to

follow the rationale behind this procedure. Eqs. (i) and (2) give strains

which are inadmissible_ according to the authors, and which give rise to addi-

tional radial displacements as indicated in Eq. (9). It is not clear why these

corrective displacements have not been incorporated in the strain expressions

before proceeding to the determination of the uriloading process. In any event,

in view of the uncertain validity of the assumptions underlying all these

equations as well as of the preliminary computations carried out in Section C. 9

we are not tempted to place too much credence in the quantitative results

obtained in the ARC report.

' T rC. 3 EX-PER!MENTAu PROC EDURE

In contrast to the foregoing discussion, the test procedure as outlined

in the ARC report appears to be sound and well conceived. The program is fairly

straightforward, and the results should be reasonably reliable, given a fair

degree of care during the experiments.

We find the substantially lower value of the stiffness K , as compared
H owith the predicted value, as puzzling as do the authors, owever, the authors'

explanation in terms of a miss_match of the cylinder with the splicing material

is somewhat bewildering. In particular, we have been unable to find a rational
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derivation for the equations on Page 23. Perhaps this is due to a laxity in

the definition of the terms. As the equations are written, it would follow

that the specimen is subjected to an axial force and a bending moment for

vanishing values of e. Rather we expect that the apparent "softness" of

the specimen is due to the substantial unevenness and wrinkles which produce

extensions under forces which are substantially smaller than they would be in

the absence of such wrinkles.

C.4 PRINCIPAL DISAGRE_ENT

We believe that the structural analysis contained in the ARC report

does not represent a safe prediction of the final shape of the Echo II

balloon. All deviations from true sphericity during unloading are computed

on the basis of the assumption that the balloon, during the inflation process,

becomes a perfect sphere through radial motion. This assumption is unconfirmed,

untenable, and contradicted in our own preliminary study.

C. 9 AN INDEPENDENT ANALYSIS

In what follows we develop the basic equations governing the idealized

case of an elastic balloon of homogeneous properties and composed of a large

number of gores. For simplicity we assume PoissonTs ratio _ to vanish; this

introduces no significant deviation from generality. We assume a circular

cylindrical coordinate system in which the z axis represents the axis of

rotation of a representative cylindrical gore segment and in which the x and y

axis form the plane containing the center line of that gore. The y axis points

toward the pole and the x axis lies in the e_uatgrial plane. We denote unit

e respectively.
vectors in the coordinate directions by ex, ey, z

if r (corresponding to r in the ARC report) denotes the radius of the

gore cylinder and 8 the latitude of a generic point, then the position vector

in the original configuration can be written as

r = r cos 8 e + r sin 8 e + z e (C.I)
x y z

In the deformed state the position vector is

: r + (w cos @ - v sin @) e + (w sin@ + v cos@) e + u [ (C.2)
x y z

in which u, v, w represent the displacement components in the axial (z),

circumferential (@), and radial direction, respectively, and are each to be

treated as functions of the variables 8 and z. The boundary of the gore is

given (originally) by z = _ r cos @, in which _ represents the very small half

central angle at the equator and corresponds to the ARC term _/n. Henceforth,

for the sake of simplicity, this boundary will be referred to as B.

It follows from the symmetry of the problem that all points on B move in

the plane containing B and the center of the balloon. This can be expressed in
the form

• _ =_ _ • _ on B
z x
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which, after substitution of Eqs. (l) and (2), leads to

u : _ (w cos 0 - v sin 8) on B (C.3)

Note that Eq. (C.3) as well as the boundary conditions developed later on must
be satisfied for all values of 8.

A further result of the symmetry of the deformation is obtained by setting

the shearing membrane force equal to zero on B, that is

s -- o on B (c.4)
This shearing force S is expressed in terms of the displacements later on.

A final boundary condition is obtained from the assumption that the shell

has vanishing bending stiffness. In the '_embrane" so obtained, equilibrium

requires the absence of discontinuities in the surface slopes (unless there exist

concentrated forces). In the present case this implies that the balloon must

be "smooth" at the seams; ± in view of the sy_netry of the deformation described

previously, this in turn means that the vector normal to the balloon surface must

also lie in the plane of B, that is,

R'8 x R'z " _z : _ _'e x R,_- " ex on B,

in which a comma followed by a subscript represents the partial derivative with

respect to the associated variable.

When Eqs. (C.I) and (C.2) are substitdted in this equation, and after

linearisation with respect to the displacement components, we obtain

w, = - _ cose(l+ ) _ [(w,e - v) sine+ (w+ v,0) cose]on BZ H'Z -- 7

In line with the assumption of the vanishing of Poisson's ratio, the membrane

forces are expressed in t_rms of the displacements as follows:

N = K ,_

(c._)

NO _ K (v, + w) (K = E t) (6.6)- r O

)28 = K O + v,
r z

In Eq. (C.6) we have retained some non-linear terms and have discarded others;

this is consistent with the assumption of "shallow shell" theory.

We now expand the displacement components in a power series near the central
line z = 0 as follows:

i
A more realistic analysis involves the development or retention of slight

kinks as boundary layers. This has been discussed in Appendix B.
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2

w Z- = a +b _---+
r k[

r

u z a 3
- = c - +d-- + . . .
r r r3 --

(c.7)

2

v=f+gZ +
r 2 -- " " " "

r

in which the terms a, b, etc., are functions of e. A so, Eq. (0.7) already

take _ _aucoun_ of obvious symmetry conditions with respect to the central line

If Eq. (C.7) is substituted in Eq. (0.6), then the membrane forces are

also expressed in terms of power series in z. These membrane forces are sub-

ject to the three equations of equilibrium

S,e
N + - 0
Z,Z r

+ = o (c.8)2
S'z r

N e
---N =p
r Z W'zz

in which the last equation represents again an approximation consistent with

shallow shell theory, and p designates the internal pressure. Substitution of

Eqs. kC.7) and (J.6) l__ Eq. (C.8) results in a system of equations, which, for

z = o, assumes the form

6 d + 4 b- + -- c" + g' = 0 (a)

1 ' + + f" a'7 e g + = 0 (b) (C.9)

a - 2 b c = pr (c)f' +
K

Similarly, Eqs. (C.4), (0.3) , and (C.5) lead to

_2 2c' + 2 g = - d' cos e + . . . (d)

c a + f tan6) (d - b + g tane) oc2 2- = - COS e _+ . . .

3
(e) (0.9)

2 b + c + a' tane + a + f' - ftane =

- - 1 - (3 d + b' tan e + b + g' - k tan e) c_ cos 2 e (f)

2
The exact equations of equilibrium relative to the deformed configuration

contain further terms, which can be ignored in the present case.

3 The terms omitted contain powers of _ higher than the second.
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in which a prime represents the derivative with respect to e.

Eqs. (0.9) constitute a system of six non-linear differential equations

in the six unknown functions a, b, c, d, f, and g. The general solution of

this system is, of course, involved and is therefore not attempted here.

However, if it is assumed that all functions are regular in _ near _ = 0 and

can therefore be expanded in a power series near _ = 0 (that is,

a = a + o_a_ + ... etc), then it is possible to find the solution by means of
0 . ± -- . . -- . _ " "

the usual perturbatlon technlque by equatlng individual powers of @ to zero.

Also, it wil_ be assumed that the right side of Eq. (C.9c) can be exNressed in

the form k _'- in which k is a term comparable in magnitude to unity. _

In the perturbation expansion described above, the system of equations

involving the terms independent of _ leads to

1 1

..... " " " :go :° (C.lO)bo # ; do _ ; ao

It is noted that Eqs. (C.IO) do not represent the only possible solution;

however, the other solutions are physically unrealistic and lead to difficulties

in the higher order expansions.

For the terms quadratic in _ we arrive at the following system of equations:

TT

1 Cl,, + gl : 0 (a)6 dI - 4 bI + 2

2]_Cl' + gl + fl" + al' = 0 (b)

fl' + al + Cl = k (c)

eI' + 2 gl = 0 (d)

(C.IL)

el - al + fl tan 8 = 1- _ cos e (e)

2b I + cI + aI tanS_ + aI + 'fl - fl tan8 = cos2e (f)

By combining Eqs. (b), (c), (d), and (e) we are led to the following equations:

al + fl' = C1

1

fi t + fl tan 8 = 2 C1 - A - _cos 8

(a)

(b)
(c.12)

in which C1 is a constant integration. The general solution of Eq. (C.12b) is

See Section C. 9.
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_n tan _ _ - _ cos e,

F

= [ c2+j(2 cz -

in which Co is another constant of integration. Since, at the equator, v

vanishes, =and because of thekregularity requirements at the poles, it

follows that C2 = 0 and C1 = [ , that is,

8

fl - _ cos 8

and, in view of Eq. (C.12a),

1 @ k

al 3 cos 8 3 sin 8 +

Substitution in the other equations leads to

k

Cl =_ ; gl = 0,

and finally, in view of Eqs. (C.lla) and (C.llf),

1

1 (cos 2 e - X) + _ sin 8 tan ebl = 2

(C.13)

(C.14)

(c .z5)

((].16)

(C .17)

dl i (cos 2 e - k) + 2= _ _ sin 8 tan 8

The process could now be continued for the determination of the higher

order terms; however, this is not attempted here since the main purpose of this

investigation is to present a comparison of our solution with that

presented in the ARC report. It is felt that the results obtained here and

evaluated further below afford such a comparison.

With all the functions so obtained we determine the displacements, after

letting z m _ r _,

r 2 3 cos - 2

r _-_ -" " " (C .18)

v
.... e cos 8 + . . .
r 3

It is noted that Eqs. (C.18) and especially the presence of a circumferential

displacement v, are incompatible with the authors' assumed radial movement.

Similarly, the membrane forces are given as

_2
N =Kk--+
z 2 - " " "

:KX_ 2
_e -2 -+ " " "

S = 0 + . • •

G-'8

(c.19)
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We note that, so far as the terms involving the second power of _ are concerned,

the membrane forces are constants; this is in contradiction with the ARC report,

as already discussed in the main body of this study.

Finally, with the displacements given in Eqs. (C.18), we determine the

positior_ vector in the deformed state by substitution in Eqs. (C.I) and (C.2).

If we call R the final distance of a generic point from the center of the balloon,
we obtait_, for z = 0,

R 1 +r 2

1 !e sine_+_ . .
cos e - 3 / - " (c.2o)

The same expression is obtained for any other value of z. In other words,

within the approximation implicit in terminating the series with the second

power of _, the parallels of latitude are perfect circles. To the extent that

the deviation from true circularity does not appear for terms of power less

than the fourth, the present study is in agreement with the ARC report; however,

o a_eement as to the magnitude of the fourth order term_ is implied. Moreover,
q. [C.20) shows that the meridians are not true circles and that, within the

limits of the expansion employed here, there occurs a flattening of the

sphere which is given by

_R(e = o) R_(e
r - r _- -- 6

(2 + _) +_... (c.21)

This flat:te:__ing effect is missing in the ARC report; this is not surprising

inasmuch as the ARC report is based on the fundamental assumption of radial

motio:_' into circular shape.
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APPENDIX D

This report is concerned with the Radar Reflectivity Measurements per-

formed by Conductron for NASA as part of the Static Inflation Tests_ Lake-
hurst, NAS, June - July 1963.

D.I DESCRIPTION OF MEASUREMENT PROCEDURE

A scaffold, 48 feet high, was erected in the Lakehurst NAS main dirigible

hangar. Upon this scaffold was constructed a wooden track, 86 feet in length.

The track formed a circular arc_ iOO feet from the surface of the balloon, which

when inflated, had a radius of 67.5 feet. The angle subtended by the arc was

30o. Figure D-I illustrates the relative position of the inflated balloon, the

scaffolding, and the hangar interior. Figure D-2 illustrates the plan view of

the relative positions of the balloon and the scaffolding. At either end of

the track was located two standard gain horn antennas, one L-Band and one C-

Band. They were mounted back to back so that by a rotation, either one could

be made to point at the balloon, aligned along the balloon radius. These horns

were the transmitting antennas, being connected, respectivery, to a 1.71 KMC

and a C-Band CW source. The sources were located on a platform mounted just

beneath the track. A small wooden cart was constructed to move along the track.

On the cart, similarly to the transmitting horns, were mounted a third pair of

horns. These served as receiving antennas, and were connected to a Scientific

Atlanta receiver, located on the deck of the hangar. The coordinates of the

recorder chart were db vs. angle. The cart was motor driven_ and its position

on the track was synchronized to the motion of the recorder chart, so that the

angular position of the cart could be made to coincide with the recorded posi-

tion on the chart. The cable from the receiving antenna to the receiver was

slung so that constant cable length could be maintained, independently of cart

position. Figure D-3 is a sketch of the physical arrangements.

Switching was provided so that all changes of electrical connections and

positioning of the receiver cart could be controlled from a console which was

constructed and located adjacent to the receiver. Rotation of the horns was

performed by technicians who were located at either end of the track. Tuning

and monitoring of the RF sources was performed by a technician located on the

source platform. The mounting of the horns was construete_ so that axial rota-

tion could be performed, permitting change of polarization.

One hundred feet from the scaffold and on the opposite side from the bal-

loon, a tower was erected, atop of which was placed a flat calibration plate

whose position could be remotely controlled and synchronized. During calibra-

tion runs the horns were aligned in the direction of the flat plate. Calibra-

tions were performed at 5.85 and at 1.71 KMC. Prior to a test sequence, the

C-Band horns were aligned in the direction of the flat plate, with the receiver

cart adjacent to the left transmitter horn. All horns were at vertical polari-

zation. The 5.85 source was connected to the left transmitting horn, the flat

plate rotated, and a flat plate pattern run off on the recording paper. The

D-I



0
a3

0

qJ
:>

4.J

q;

b,Q

0

0

°e4

r._

o

0

4J

4J

ffl

o
,--4
t_
0

o_

4a
0

0
o 0

Orq
t_ t_

o

°M

13-2



_ i00'

t
Figure D-2 (Not Scale) Plane View of Scaffold-

Balloon Configuration. Viewing Aspect
for i0° South of Equator
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Figure D-3 Sketch (Not Scale) of Scaffold
Antennas and Receiver Arrangement
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voltage source was then connected to the receiver through an attenuator and

adjusted so that the receiver pen coincided with the flat plate maximum. A

straight line pattern; using this attenuator setting was run. The right trans-

mitter was then connected; a new flat plate pattern recorded; and its maximum

compared to the straight line pattern. The attenuator setting was then read-

justed so as to lie midway between the two flat plate maximum. This adjust-

ment was maintained throughout the test sequence_ and used as the calibration

level for measurements at 9.85 and 9.65 KMC. Its nominal value at 5.69 was

obtained by computation. The L-Band system was similarly calibrated. At the

conclusion of a test sequence; the stability of the source was tested against

a flat plate run. For no test sequence was there observed a change in the

calibration level.

A test sequence was performed in the following steps:

I. Upon being notified by the test director that the balloon had been

inflated to a given pressure level; which was to be maintained throughout the

test sequence; the L-Band system was connected and the horns; all polarized

vertically; were aligned on the balloon; the receiver cart adjacent to the

right transmitter.

2. The right transmitter was connected; and the cart moved to the

left; the signal level being re<_orded.

3. When the receiving horn reache@ the left most position_ the left trans-

mitter was cnnnected; and the receiving horn run to the right. Simultaneously

the right transmitter was rotate@ to horizontal polarization.

4. Upon reaching the right_s± position_ the right transmitter was

connected; the receiver run to the left; and the left transmitter rotated
to hc_rJz(mta].

5. Upon reaching the ].eft most position; the left transmitter was connected

and the _art run to the right.

6. Upon reaching the right most position_ the receiving horn was

rotated to horizontal_ the right transmitter connected; and the cart run to
the left.

7. Upon reaching the left most position_ the left transmitter was

connected_ and the cart run to the right.

8. The recording paper was then calibrated with the secondary standard.

These steps were then repeated for 5.65 and 5.85 KNC. In this fashion; at

each frequency; patterns were obtained_ which for simplicity; were successively

labeled in the following manner:

D-4



" _ont[ttdron _orporation

TRANSMIT RIGHT W

TRANSMIT LEFT VV

TRANSMIT RIGHT HV

TRANSMIT LEFT HV

TRANSMIT RIGHT

TRANSMIT LEFT h-H

Por any transmit position_ the bistatic angle increased from 0° to 30 °. The

"specular" an_le, defined as the bisector of the bistatic angl% increased

from O° to 15-. If the specular angle were redefined to be the angular posi-

tion on the balloon corresponding to the specular ray_ letting_ for conven-

ience_ the right most position correspond to 0°_ then for TRANSMIT RIGHT_ the
. O O

specular angle increased from O to 15 _ and for TRANSMIT LEFT_ it decreasedo O
from 30 to 15 •

.QT_e ball,on was constructed of adjacent gores_ each subtending an angle

of_ ~ 3.4 • The sector of the balloon corresponding to O° - 15 ° contained
two _djacent reinforced gores; therefore_ the patterns corresponding to _RANS-

MIT RIGHT represent a specular angle which passes over the reinforced gores_

and those corresponding to TRANSMIT LEFT, a specular angle which does not

pass over the reinforced gores.

D. f*: BACKGROUND LEVELS

The _adar cross-secti_n of a conducting sphere_ 67.5 feet in diameter_
is 1335 mm, or 31.2 db > m-. Following usual practice in cross-section mea-

surements, it was felt that to validate the measurements, the background

levels must be maintained at least i0 db and preferably 20 db below this

nominal value. The antennas being located 167.5 ft from the center of the

67.5 foot (radius) balloon, the balloon subtended an angle of 44 ° of the an-

tenna beam. Antenna patterns of the standard gain horns were measured at

the Conductron Range. At 22°_ the poorest of the horns (in terms of beam-

width) had a power gain of - 12 db relative to its peak. Therefor% any

power radiated past the balloon and reflected from the back wall of the hangar

was, automatically, 12 db below the specularly reflected power. The back-

ground levels in the hangar were found_ prior to balloon inflation_ by mount-

ing a transmitter on a cran% and transmitting from the nominal location of
the center of the balloon. Receiving antennas were also mounted on cranes and

moved along the planned position of the receiver track. The data was cali-

brated and the signal power received was found to be 20 to 30 db below the
nominal return from the balloon.

A more serious background effect was direct cross-coupling between the

transmitting and receiving antenna. In preliminary tests_ there was superimposed

upon the cross-section pattern a sinusoidal oscillation which decreased as the

b!static angle increased. This oscillation occurred in both frequency bands.

The period of the oscillation was consistent with side lobe coupling_ since the

maxima and minima occurred when the antenna separation was such that postulated

sidelobes would be_ respectively_ in and out of phase. In any even% dielectric

absorber sheets were placed next to the transmitting antennas_ shielding them

from the receiving antennas. The result was to eliminate completely the appar-

ent coupling at C-band_ and to reduce it to a maximum of 1.5 db at L-band.
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It was not felt that this last residual coupling compromised the data because

it was clearly identifiable_ and could be taken into account in the analysis

and reduction task.

D.3 DATA CORRECTION

Each calibration consisted of four measurements. As noted above; a secon-

dary source was adjusted to locate the receiver pen midway between two flat

plate maxima before each test series and compared to two flat plate maxima after

each test series. Using all of the calibrations so obta:ined_ the-mean calibra-

tion level at L-Band was 25.5 db and 36.7 db at C-Band. At both bands_ the

sta:Jard deviation was less than 1/2 db.

Because the antennas were located in the near zone of the balloon_ :it was

necessary to apply the near zone correction to the data. In Section D.71 the

derivation of the near zone correction for a sphere is derived. Taking into

account the fact that the bistatic angle 2 _ is less than 30°_ the formula at

the bottom of page of the appendix shows that the measured magnitude of the

bistatically scattered field is

= E a

o 2r ;

where Eo is the magnitude of the incident field; a is the radius oIf the sphere_

and r is the distance of the antennas from the center of the sphere_ _lIf the

magnitude of the field backscattered by the calibration plate_ is EkC,_ then

iE " = ,

/4 - a) 2

c_
where d( ' is the cross _e_ticn of the calibration plate.

measured cross section dkm] is

2

o = E-_ =

2
Thus; the true cross section 3 _ a _ is

(_ a 2) r - a 2.. [---_--]

<r a)

for r = 167.5_ r - a = i00

2

= (1.67)2 o(m),

But then_ the

m-6
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or 2 (m)
a = (_ + 4.5 db.

Thus_ the near-field measured cross section must be increased by 4.5 db to
obtain the true cross section.

The antenna taper, previously mentioned in connection with background

levels has an effect upon the data. At the m_ximum bistatic angle, that part

of the balloon which is most significant for scattering, i.e., that part in

the neighborhood of the bistatie angle bisector, is at the 9.5 ° point of the

antenna pattern_ with a consequent power loss. The resulting data correction
is:

+ 3 db_ at L-Band_ horizontal polarization

+ 2.2 db_ at L-Band_ vertical polarization,

+ 5 db, at C-Band s horizontal polarization, and

+ 4 db, at C-Band_ vertical polarization.

These corrections must be applied to the measured cross section at bistatic

angles of 30° . For lesser bistatie angles_ we have interpolated linearly.

D.4 THE STATIC INFLATION TESTS
t

During the period_ 1 June - IO August, 1963, three A-12 balloons were in-

flated. Balloon No. 9 was initially inflated to check out systems. Balloon

No. ii was then inflated'to rupture s Balloon No. 9.was reinflated to rupture_

and Balloon No. 13 was inflated to rupture. R.F. data was obtained for all

three balloons. For balloons No. 9 and No. ii, measurements were made at

1.71 KMC, 5.65 KMC, and 5.85 KMC. The test procedure was to inflate the bal-

loon to a given nominal surface stress_ to maintain the stress while a complete

R.F. test sequence was performed_ to reduce the stress to approximately 500 psi_

and to perform the test sequence again in this "relaxed" condition. This was

then repeated at a higher pressure_ until rupture. It was very quickly observed

that the HV cross sections were_ with few exceptional points_ well down

in the backgrnund.

To analyze the data, it was decided to divide the balloon into 5 ° intervals.

After making the corrections to the data noted above, the average cross section

on each 5 ° interval was measured using a planimeter_ and the scintillation on

the interval (i.e., the difference, in db, between the maximum and minimum

cross section. There was not enough difference between the 5.65 KMC and 5.85

KMC data to warrant considering both_ so 5.85 KMC was chosen. The results are

shown in Tables D-I and D-2. The columns headed 0,75, iO_ 15, 20, 25_ are the 5°

intervals starting from the right (reinforced gore) ± . The entries under "m"

are the mean values relative to the nominal balloon, and the entries under "+"

are the scintillations.

Balloon No. 13 was designated to be the prime data balloon. In order to

keep the balloon under stress for shorter periods of time, it was decided to

omit the 5.65 KMC measurement and to perform cross polarization measurements

only as spot checks. Theresults are listed in Table D-3.

iFor Nos. ii and 13 Balloons. For No. 9 Balloon_ the reinforced gore was

on the left. D-7
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TABLE D-I

MEAN VALUES AND SCINTILLATIONS OVER 50 INTERVALS

NO. ll BALLOON

Pattern #

46 - 63

82 - 99

126 - 143

162 - i79

180 - 197

Pattern #

202 - 217

Psi 0 5 I0 15
m + m + m + m +

750 LL_7 0 i0 -4 28 0 8 -I 72 i0 -3 30 i 8 0 4

CV I 9 -i 23 -i 14 -2 7

CH O 9 0 28 -i 19 -3 9

1500 _7 i 8 -2 33 0 6 0 5
1 12 -I 28 1 8 1 6

C_ o 9 -2 21 o 13 -4 4

CH 0 i0 -i 21 -i 15 -3 6

2780 f¢ l 8 -I 26 1 6 0 6
_ I 7 0 27 2 8 I 5

IV 1 8 0 18 1 9 -2 3
CH O 9 -i 18 0 8 -I 5

4800 _7 1 6 0 19 0 7 1 4
2 9 0 17 2 4 3 3

_, i 6 i 12 I 3 0 i

0_ 0 4 0 12 I 3 I 2

500 L_ 2 9 i 23 i 7 2 3
3 8 1 22 I 5 2 4

C_ 0 6 -I 16 0 7 -2 3

G.H 0 7 -i 15 0 7 0 3

TABLE D-2

MilAN VALUES AND SCINTILLATIONS OVER 5° INTERVALS

Psi

75o

NO. 9 BALLOON

m + m + m + m +

-1 4 -1 3 -1 6 -3 8
i 3 i 5 i 5 0 6

" -3 10 -2 6 -1 9 -4 12

CH -2 9 -i 6 -i 12 -i 9

2O

m

25
+ m +

0 6 0 4
i 3 I 3
1 9 0 4

i 7 0 4

i 3 0 4
2 4 i 4

-I 8 -i 5
-i 9 -I 4

2 3 I 3
2 3 2 3
0 4 -i 3

I 5 0 4

2 3 i 5
4 4 2 3
0 3 -I 3
i 2 0 2

3 3 2 3
4 3 2 3

-i 5 -I 4
0 5 -I 3

m

-5
-5
-4

-5

+ m +

17 -i 8
23 I 4
18 -3 19

17 -2 20
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Pattern # Psi

230 - 241 1500

260 - 269 2600

280 - 289 4800

290 - 299 500

TABLE D-2 Cont.

O 5 i0
m + m + m +

2O
m 15 + m + m 25 +

T, 0 5 -i 3 0 4 -I 5

0 4 0 4 i 5 0 3
-2 i0 -4 6 -4 12 -2 9

<J .

C._ -2 9 -i 5 O 12 -I 9

2. 6 o 3 i 4 0 4• I 4 2 2 4 4 i 3

d,. -1 9 0 5 1 9 -2 6
(_ -i 9 -i 5 O iO O 6

ILV i 5 0 2 1 4 i 5
1 5 1 2 2 5 I 3

I.,CH O 7 i 3 2 7 O 4
,V
CH 0 7 i 5 2 7 i 5

1 4 0 4 2 5 I 3I 5 i 4 O 5 2 3

_V O 9 i 6 i 7 i 6
H 0 8 0 5 O ll 3 7

-3 20 0 5

-4 12 i 5
-5 13 -3 19

3 15 -2 20

-2 12 i 4

-2 13 2 4

-5 16 -2 16

-4 i6 -i 15

-4 11 1 4

-I 7 2 3

-2 8 i 12

-2 !0 O i0

-2 13 2 4

-I 11 2 5

-2 ii 0 13

-I 12 O 13

Pattern #

312 - 329

322 - 339

TABLE D-3

M_AN VADOES AND SCI_!LLAi'!ON OVER 5 ° I_rERVALS

Psi

40O

15oo

"rV

_V

CH

LV

LH

uH

N0. 13 BALLOON

O 5 i0m + m + m + m 15 +

3 5 0 3 0 4 0 4

2 4 i 3 0 4 3 4

5 6 4 11 6 7 2 5

5 7 3 12 3 6 3 8

2 3 0 3 -i 3 I 3

2 3 i 3 I 2 3 2

2 4 3 8 i 7 -i 5
0 5 3 9 I 8 i 4

2O
m + m21 +

%

0 3 0 4

3 4 i 2
2 6 3 8
2 6 3 7

i 2 2 4
2 3 3 4

-2 4 -1 6

-i 5 O 6
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Fattern # Psi
O 5 iO m19 20m + m + m + " + m

T

340 - 347 2800 _._/7 2 3 i 3 -i 2 1 3 2
_,._ 1 2 0 3 -2 5 2 2 2
C::: 0 3 1. 5 -! 6 -2 6 -2

(]._ O 4 1 8 -2 9 O 5 I

348 - 359 4800 Iv 2 1 i 2 O 3 O 3 i
2 1. 2 2 0 3 2 3 3

:1 3 .] 5 i. 4 -] 5 Oo 1 o 6 o 4 1,
H

360 - 371 900 L_ 2 2 1 3 1 4 -]_ 3 -1

IIH ]. 2 1 3 0 5 ]. 4 2

[iV O 5 l 7 Z 9 -1 5 -I
i_ O 5 O 7 -i 7 O 5 O

372 - 383 7400 l,V 1 i 1 3 O 2 -2 3 -I
I_,._ 2 2 :l 4 0 3 I 3 ].

'fV 0 4 :I. 3 0 4 -.2 6 -1

t:H O 3 l 5 -I 7 -2 8 i

384 - 393 500 L. 2 2 1. 2 0 3 -1 3 0

LV 12 130 5 22 2

(]]: O 6 i 6 0 6 -2 7 O

"H -i 6 i 6 O 7 -2 6 -i

+ m25 +

4 0 4

3 2 3

5 -1. 5

5 -i 6

D.5 DISCUSSION OF THE RESUI:TS

F-Jr the prime data balloon No. 133 we are interested in the mean values

and sc:ir_tiilation as functions uf frequency; pressu.re; and pu!arJzation. To

exhibit this dependence_ we have chosen to display the data in the fo]lowi:r,_g

tab±es_ Table D-4 and Table D-5.

m - REi:_OR(]ED G_ RE

PSI L? L_n C,.V CH I\7 L H C,,v UH

400 0 1 4 3 3 9 18 ].8

19OO O 1 3 3 5 Ii -1. 1

2800 i 0 i 1 6 5 -6 0

4800 1 2 1. ]. 4 9 0 2

5OO i 1 i O -1 9 -i -1

7400 i l 1. I -2 5 -3 -3

500 1 i i i[. ]- 7 -3 -5

TABLE D-4
m - SIN_ED OVER o_"OER "_3Rr-''_*

{'Tb.ese sums, When divided by 5, give the average values of m and + for

the unreinforced part of the bal].oon.

D.-I.O

5 0 3

3 I 2

6 0 2

6 -! 3

5 o 4
3 ]. 4

5 o 6
5 o 5

5 i 3
3 2 2

5 o 5
6 1 5

4 2 4

2 2 3

6 --l. 7
5 1 5
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TABLE D-5

+ - REINFORCED GORE + - SUMMZD OVER OTHER GORES*

_7 CP_- Lv _ % H _v _ cv c_
400 3 3 ll 12 20 18 32 34
l_OO 3 3 8 9 l_ 14 26 28
2800 3 3 5 8 16 14 28 28

4800 2 2 7 7 15 14 22 26

500 3 3 7 7 18 18 31 27

7400 3 4 3 5 14 13 22 27
500 2 3 6 6 16 15 29 30

These tables are self-explanatory and represent the final reduction of the

data obtained on the No. 13 balloon. They reveal several clear; albeit slight_

dependences upon the parameters. It should be borne in mind that first of all_

the computations exhibited in the tables in this report have been rounded to the

nearest decibel, and that small db differences in cross section can correspond

to larger percer_age differences in fields, and therefore represent significant

physical effects. The data reduction herein has been designed to extract from

the raw data an expression of systematic dependence upon parameters. It re-

mains an o_en question to decide the effects of their dependence upon a parti-

cular eommuni,2atiDns system. Even though the scintillations in the radar cross

seetiDn of an A-12 balloon may be large_ they are systematic and predietible_ and

a program to design them out of a communications system through the use of
filters is feasible.

*These sums, when divided by 5, give the average values of m and + for

the unreinforced part of the balloon.
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D.6 SAMPLES OF RAW DATA
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D.7 NEAR-ZONE BISTATIC SCATTERING BY A SPHERE

The high frequency near-zone bistatic scattering by a perfectly conducting

sphere for a receiver in the illuminated region is considered. For large values

of ka_ where k is the free space wave number and a is the radius of the sphere;

the dominant contribution comes from the region of the specular point with the

diffracted field being insignificant. In particular; for the present case ka is

the order of 2 x 10 3 . The near zone bistatic field can be obtained using the

Kline-Luneberg asymptotic expansio% for which the analysis was worked out by

Schensted [i] for p_ane wave incidence on bodies of revolution.

D.7.1 Bistatic Scattering for Plane Wave Incidence

Let a plane wave travel in the direction of the positive z-axis and

polarized in the x direction. Consider a sphere of radius a_ whose illuminated

portion of the surface is given by

2 2z = f(p) = a- a - p (D-l)

whe re

x 2 2p = +y •

The scattered field has the form

E s = e kn E (D-2)
-- --n

n=0

For the case on hand 3 only the first term given by n = O need be considered_

since the remainder of the expression is the order of i/(ka). The phase fac-

tor s is the distance along the incident ray from the z = O plane to the specu-

lar point; plus the distance along the scattered ray from the specular point to

observer. See Figure D- 4, s is the distance AB + BP. The leading term of

expression (D -2 ) has the form

)1/2
E = h_ (-cos _ p + sin ¢ __) (D-3)-o hp

where for the observation point P; p is the distance of the specular point

B from the z-axis. If the bistatic angle ABP is defined to be 2 G3 then we have

p = a sin <z (D-4)

The angle _ associated with the position of the observer P is the angle between

the y = 0 plane and the plane containing the point P and the z-axis. The values

of h R and h# can be found on using Equations D-I,D-4 and reference [1] to have
the _orm

D-18
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(D-_)

The vectors _. and 2 have the form

2_

h = 1 +

P a cos (z

h_ = a sin _ [1 + 2,_acos _]

Where s is the distance BP.

: - sin _ -xi • oos _ iy

p = cos2 a [cos_ i ÷ sin_ <] • si_:2 _ i
-- --m --y --Z

(D-6)

To complete the picture we need to find % in terms of the angle c_ ar,d the dis-

tan<'.e r of the observer from the cer_ter of the sp],ere. It is seen from Figtlre

D-4_ that

a r (D-7)
sin (8 - _) - sin (2 _ - 8) - sin

Solving the last two equations for e - (_ we have obtair:ed

sinsin(8_- _) _ ra cos _ + _ 1 - -r-(_)2sin2 (D-8)

thus giving

j -_o '2= a [- cos _ + (._,_- - s:m _]

Hence combining the above resul.ts _,e obtain

(D-_)

_. p 1/2 I - 2 cos C_ + 2 c_s - sin-_

(D-I 0)
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D.7_!.I Relationship Between Near-Zone and Far-Zone Results Let a transmitter

be located at point T (Figure D-5). We shall assume that it is sufficiently

far away from the sphere so that the specular region lies in the far-zone of

the antenna. In addition we shall first assume that locally in the region abRut

the specular point the incident wave can be treated as a plane wave. Let E° "1

be the electric intensity of the incident radiation at the specular point. -x

The scattered field in the near zone and far zone will be given in Table

D-6, for the following two polarizations. Specifically we shall consider ver-

tical and horizontal polarization, where the incident radiation is respectively

polarized perpendicular and parallel to the plane formed by the transmitter,

the receiver [previously called observer) and the center of the sphere. The

scattered field for the horizontal and vertical polarization cases are found

by setting _ = O, and @ = _/2 respectively in Equations D- 3 and D-6.

As seen from Table D-6, there are no cross-polarization terms. This is

because the cross-polarization terms occur in the terms of the series (Equa-

tion D-_) which have been neglected, and are of lower order by a factor

5 x i0 -_. The angle 2_ is the far-zone bistatic angle. To extrapolate far-

zone results from near zone results this angle must be fixed.

We next come to the question of changing the assumption of plane wave in-

cidence. A more accurate assumption with the transmitter at a finite distance

from the sphere is to treat the incidence wave in the neighborhood of the specu-

lar point as a spherical wave. The main effect of this is to change the factor
4D(o)/D(s) given by Equation D-IO. For simplicity we will take transmitter

and receiver to be the same distance r from the center of the sphere. The

"divergence factor" 4 D(o)/D(_) can be obtained from Fock [2],

D(o)/D(_) = a__ --{ cos _ --_1/24
2r M(_ sin 2 _ + cos _ M) •

with M =_ i- (_ sin a) 2

Thus if a spherical wave is assumed incident, then Table D-6 must be modi-

fied in that the near field magnitude (the second column) must be replaced by

E _ { cos_ }1./2

o 2r M(_ sin 2 _ + cos _ M)

REFERENCES:

[1]

[2]

Schensted, C. E., "Electromagnetic and Acoustic Scattering by a Semi-

infinite Body of Revolution," J. Appl. Phys., 26, 3, 306-308 (1955).

Fock, V. A., "Generalization of the Reflection Formulas to the Case of

Reflection of an Arbitrary Wave from a Surface of Arbitrary Form, Z.E.T.F._

20, 961-970 (1950).
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T
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2o_

Figure D-9

T = transmitter

P = receiver

25 = bistatic angle

Bistatic Geometry
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APPENDIX E

E.I CONDITIONS FOR I_iCHIPHYsic$.OPTIC$1ApPR6Xi_TioN_CANBE

USEDON A QUAS!-ROUCH PERFECTLY CONDUCTING SURFACE

We shall consider perturbations on a large convex surface the values of

curvature of which is everywhere large compared to wavelength. The basic un-

perturbed surface will be given by z = g(x, y), where the cartesian coordinate

system is chosen so that x-yplane is tangent to this surface at the origin.
The perturbation will be given by z = 5(x_ y) so that the rough surface is
described by

z = g(x, y) + 5(x, y).

We shall consider a plane wave incident upon the surface the direction of

propagation lying in the x-z plane. Specifically the incident magnetic
field intensity is given by

H0 = a eik(xsin_ - z cos(_)

where 151 < _/2.

From Maue* we have the followingintegral equation for the tangential compo-
nents of H on the surface

i /[VQ G X _(Q)] xn(P) d SQ.i(e)=zo(p)+
S

(E.i)

where

±=n×i_

withr : I% - _QI
and n is the outward normal to the surface.
that-we seek is that

The physical optics approximation

i x _J.) ,,,2 __x _:o(.).

Hence we shall first assume that

* Maue, A.W., Zeit f Physik, 126, pp. 601-618 (1949).
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i(x) = l(x) eik(x sinC_ - z cos_)

where i_(x) is a slowly varying function of (x).

Integral equation (E.I) can then be written in the form

I f i i [(_ r X _) X np] eikfl(x) = 2 IS(x ) + _ r [ik -r ] _

S

where f = r + (x' - x) sing - (z' - z) cos_ .

d SQ (E.2)

(E.2a)

Apart from the exponential factor in the integrand, the integrand is a slowly

varying function. Hence we will look for the stationary phase point. This
is the point for which

_f
e 0 (E.3)

_f
y r: o (E.4)

where we have taken the coordinates of the point _Q to be (x', y', z') and
the variable of integration x' and y, so that

nz (x') d SQ = dx' dy' .

One condition on the surface is that nz(X_ ) >_O.

The stationary point specified by equations (E.3) and (E.4) satisfy the

equat ion s

i _Z'
7 (x' - x) + (z' - z) + sinC_ - cos_ _ = 0 (E.5)

ir (Y' - y) + (z' - z) cos_ _9T = 0 (E.6)

Set

X t - X
m

r --

(sin(_, O, - cos_) = k ,

P=r+k,

giving from the above

E-2
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_7, t
P =-P
x z

bz T
P =-P
y z oy'

Thus we have

p p / _z' bzT 1 _
_: _l-;_--r,-;Ur, J

• • P-+ P n x t ._ _]_I_(_)

We thus have

#% W% J% g%

(r_ k ): +_ Ix+ kln_

with solutions

s%

r=-k+_n

with ^ ^

_=Oor_=+2k. n.

The uase where _ = 0 corresponds to observation point x being in the penumbra

region and the stationary phase point xt being in the _lluminated region for

the body surface being convex.

Figure

For large corrugations the point x can be in the illuminated region, but there
is a shadow corridor separating the two points.

E-3
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A A

The case where _ = 2 k • n corresponds to the case where both x and x'

are in the shadow region fo-r a-convex surface.

n

x

Figure E-2
A A

The case where _ = - 2 k_ " _n corresponds to a concave section of the surface

is shown in the diagram.

Figure E-3

Physically the stationary point in thiscase corresponds to multiple scatter-

ing.

From these results we see that in order to use physical optics on a re-

gion of a perturbed surface, we require these regions to be sure that for the

angle of incidence under consideration, there must be no corridors of shadows;

and secondly, the perturbed surface must be locally convex everywhere in the

domain.

With these restrictions there are no stationary phase points and the main

contribution to the integral (E.2) arises from the neighborhood of the point

X.

To evaluate the integral contained in Equation (E.2) we will take

x = (% O, 5A). This places no restriction, only specifying the choice of the

_rigin. We _ill consider the particular case where the unperturbed surface

is a very large sphere of radius a, where its equation in the vicinity of

origin is given by

E-4
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1 (x2 ÷ y2z = g(x, y) = - 2"_" ) (E.7)

The perturbed surface will be given by

= + _(x, y) (E.S)z = 5(x, y) 50

where 50 is the value of 5 at x = O, y = O. Hence e vanishes at x = O,

[- _. In the integrand at the integral on the right hand side of equation
E:2. we can approximate I(x') by 2 n(x_') X a where a is the unit vector

denoting the direction of the magnetic intensity vector.

The explicit integral to be considered is

1 _ dr' d_' eikf L(x', y')

JJ nx(X' )

where f is given by equation (E.2a) and

(r.9)

= 72(ik_ ;)i_E$'x [_(m')x a,]}x _n(x)_

First we have

xt 22 t2 1
r = + y + [e -_x '2" + y,2)]2

and setting x t2 + y t2 = D2

1 (__ __ )2r = p[l + _ 2a + "'']

where we assume that le/Pl << 1 as p90.

_ to requiring _

(E.IO)

This last requirement is equiva-

at x' : O, |y' P:[0. This specifies that the slopes of perturbation are small.We require e/ < < 1 for all p in a large region about p = O. For values

of p < < a, we have

i e2 1 _£+! p3
r_p+

2 p a a 8 2
a

Thus for a region about p _ O, we have

E-9



_onafuctron _orporation

kp3 ( 2}._ i k<2 _ i kp___£e+ i + kp cos@sin_ - cos_ e - P---
• 2 2akf ko + 2 p 2 a 8 a

where x' = p cos@. This expression can be approximated in the vicinity of

p _-0 by
2

i e + cos e sin (z - e_ cos c_]
kf _ kp [i + _ _ p

P

where we have neglected (_) which is extremely small. Thus kf is a rapidly

varying function essentially behaving by kp.

We have assumed that the factor L/n in the integrand of expression (E.9)
_' .

is slowly varying with respect to the exponential. Sznce the oscillation of

exponential is proportional to wavelength, we require that the variation of

L/n z in a distance of a wavelength be small.

The factor L/n is a function of the unperturbed surface g(x, y) and
Z

the perturbed surface 6(x, y) together with their first derivatives with

respect to _:I and y_. However, since the unperturbed surface has very large

radius of curvature a, and ka >> i, then the variation of the above factorls

depe:c.d.-._::ceo:_ g(x, y) is very small. The main question concerns the variation

with respect to perturbation. Essentially we will require that

'71'
Going back to the requirement that the surface be convex, additional restric-

tions can be placed upon a.

The sign of the c_rvature of the curves formed by the intersection of

the suz'face and the x-constant and y-constant planes will correspond to the

sigr.s of

(x,2 + y,2) + c and y,2 + c

8y,2 2a _,x12 2a

respectively. We require that for the surface to be locally convex

i _2 e
>0

a _x,2

_2i e
>0

a _y,2

E-6
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Hence for a section of the perturbed surface which is a valley we have

_2 e 1
O< --<-

- _xt2 a

_2e 1
0<-- <-

-- _yt2 a

To illustrate the conditions, let the perturbed surface be represented by
the form

5(x, y) = h cos _ X cos _ y

In this case h = 5
0

rise to
It is seen that the requirement

l>h _2 .
a

1
hi< [ gives

Essentially the width d of a hill or valley is given by d ; [ . The above
condition then places the following restriction upon the height h of the

hill or depth of valley

d>_ 2 h a

For example given a hill of height i/4" and a _ 810_ we have

d > 42".

With the above restrictions upon the derivatives of e(x', y'), the lead-

ing term of the asymptotic expression for integral (E.9) can be obtained by

integrating key parts with respect to the variable p and retaining only the

lower limit of integration giving

2_

i ; [0L]ik2_ de lim

0 p*O nz

valuation of this integral will give rise to terms of the order (k R )-i

k R )-± where R and R are the radii of curvature of the perturbed Xurface

a+_ t_e _point .....(0._0.5 _{ Since these factors are much less than unlty_" the.

correction terms give_ by the above integral to the physical optics term is
small.

E-7
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APFFND_rK F

F.I RADAR CROSS SECTION (NASA BALLOON)

This represents an approach tqthe problems of predicting the radar

cross section of a perturbed spherical surface. The method is basically

a _onsideration of the geometric properties of the perturbations and

what their effects would be when imposed on a true spherical shape.

Figures F-I through F-_ are topographic projections of the deviations

from a true sphere of radius ro = 810 inches. These deviations are the

differences in the vertical distance from the true sphere, (see Fgirue F-6),

to the perturbed sphere. Each value of the deviation,_8, is given at a

lattice point on a six-inch grid and is defined to be positive if the per-
turbed sphere is above the true sphere and negative if it is below. If

a collection of points are all zero, then for that portion of the sphere

projected in the x, y plane the perturbed sphere is tang@hi to the true
sphere.

The five figures represent the projections for four gores at three

different pressures. The center of the graphs are seam lines between the

gores and each gore extends to about the eighth grid on either side of the

seam. We have called areas below the true sphere "valleys" and above the

true sphere '_ills '7. A _'plateau _ is an area where the perturbed sphere is

above the true sphere, but basically spherical in local geometric character.

A "canyon"_ on the other hand, is a region where a "valley" area is

beginning to rise. Small perturbatiens_ from point to point, have not been

considered and only the gross t_po!ogical features described above have been

mapped.

Figure F-I shows the projections for sores 102 and 103 at 2800 Dsi.

In this figure_ t_o features are outstanding_ namely a hill rising over 0.2"

above the true sphere and a deep valley or pit lying about 0.4" below separated

by a distance of around 3_::. From this figure_ it can be seen that the hill

starts to bulge on either side of the seam but dips down into a shallow valley

on gore 103 where it begins to rise again near the lower side. The upper half

and extreme edges of both gores are in general valleys, and seem to be deep6ning

at the edge of gore 102 and rising at the edge of gore 103 except at the extreme

upper portion_ where it is of course a rather deep pit. Figure F-2 shows the

same gores at a pressure of 4800 psi. From this figure_ it is seen that little

similarityexists between Figures F-I and F-2 even though they are the same

gores. However, it is pointed out that gores 102 and I03 are unreinforced and

this may accnunt for the lack of similarity. In Figure F-2, gore 103 is divided

about midway by a hill on the left and a valley on the right. This hill extends

over the seam to gore i02 where it becomes a plateau about 0.14" above the

true sphere. Just below the plateau the hill peaks to almost 0.3"_and this

is about the only similarity between Figures F-I and F-23 that is, the hill

peaks are in roughly the same location and are about the same height. Figure F-3

F-I
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5

Y

Figure F-6 Section of True Sphere vs. Perturbed

Sphere. True Sphere Radius = r .
• O

5(X, y) = Deviation in z Dlrectlon

Between True and Perturbed Spheres.
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is the projection of gores 1 and 106 also at 4800 psi. This figure shows a

hill rising to a peak of 0.2" covering most of gore 106. The hill drops

gradually to a valley on all sides extending over into gore 1 where it drops

into a deep valley at the bottom of about 0.6". Figure F-4 is again gores

102 and 103 only now the pressure has been increased to 7400 psi. The simi-

larity between Figure F-4 and F-2 is a lot more pronounced now. Gore 103 is

again divided into a hill on the left dropping down into a valley on the

right. The hill continues again over into gore 102 where the plateau forms

in approximately the same location at a height of about O.12" which is slightly

less than the 4800 psi case. It is also noced that the peak in 4800 psi

case blends into the plateau shown in Figure F-4. Figure P-5 shows gores

1 and 106 again which are the reinforced gores. There is close resemblence

between this figure and Figure F-3 which was the 4800 psi case. It is noted

that as before the hill is located on the upper half of gore 106 and peaks to

about 0.2" again in almost the same place. The deep valley is at the bottom

of both gores and is about the same value from the true sphere. Figure F-5

has a rather well defined canyon located on gore 1 but, in general, it is about

the same displacement as seen on gore 1 in Figure F-3.

In conclusion, it has been shown that the undulations of the perturbed

sphere are rather random in nature and are dependent upon whether the gores

are reinforced and at what pressure the balloon is at. The deviations average

about 0.2" from the true sphere and range to as much as + 0.6". These devia-

tions at the frequencies for which the, cross section hay been computed are

instrumental in contributing to the oscillation noted in the experimental
results.

A method for evaluating the quantitative oscillatory effect of the

bumps shown in Figure F-I through P-5 is to consider a physical optics method

in order to approximate the radar cross section. If we consider first, the

return one would expect by illuminating a "hill" say, the cross section can be

obtained in the following manner.

Figure F-7 is the projection of the perturbed balloon shown in the z, p

plane where p =_x2 + y2_ For a first approximation we assume the perturbation

to be a spheriod whose semi-major axis in the z,p plane is b and a respectively.

However, in computing the cross section, we will further assume that the per-

turbation is smoothly joined to the sphere such that the first derivatives are

matched and the contribution of the matching surfaces caused by a second

derivative discontinuity is of the same order as the discontinuity caused by

the spheroid joined to the sphere directly.

The physical optics cross section is given by_

2ikz 8Ae _dz

S'

2

(F.1)
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where A is the area projected on the p plane at a distance z down the z axis.

s _ is the lit region which is just the hemiszhere bounded by -r o - h _< z _< -h.

In the actual integration_ the contribution from the shadow boundary_ z = -r o -h,

is neg±ec_ed since theory has shown this contribution to be spurious. If we

ee i: iI = elikz _A dz (F.2)

then integrating by parts yields,

I e + o (F.3)
"- 2

2ik \oz 2ik _z

where I is evaluated over the region s'. The projected area is given by

2
A = _p =&

- a2 (z + b _,2[I ......... ' ] _ - b < z <0
b 2 - _

(r._)

[to_ (z + r + h)2], - h- r < z < _b
-- 0 ,) -- --

Solvir:.g Equation F.4_ _ and -- and retailing that we will assume no first
8z 2

derivative discontinuity at the join_ the integral is then given by

2 -2ikb }
2a 2 + a e (F.5)

I - 2ik - --6-- ikb 2 ik

Substituting Equation F.5 into Equation F.I for the cross section

4
_a

2
a

bwhere + h, r2r o
0

2 _(_ 2a 2 )
ka2 sin 2 k b + k + i - _--:--cos2 k b
2b ].6._-_, b E

>> a.

For the case of a valley, we will assume that the situation is basically

the same only now the spheroid could lie within the true sphere as shown in

Figure F-8. If the same analysis is applied_ we find that the cross section

one would obtain by considering incidence on the valley is given by

(r.6)

F-lO
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4 _2
_a (b + h) 2

a = b--S--- 2b 2

k2

(b + h) sin 2 k (b + h) + 16_

2

where b _ a

+ i b2 cos 2 k (b + h) (F.7)

2r h3 ro >> a.
o

In order to consider the applications of Equations (F.6) and (F.7) to

the problem one must determine the values of a and h from Figure F-I F-5.

Since, in general, the figures show a partial hill and a partial valley_ we

could compute the cross section incident to each if there were more data

available and obtain an average scintillation signature over the region. How-

ever_ since not enough information is here at this time to obtain the desired

i_Fut for Equations (F.6) and (F.7), the above analysis will have to remain

as an academic approach until such time the information becom.es available.

Another approach utilizing the method of physical optics is as follows.

if we go back to Equation (F.3) for the integral_ namely_

! - e _A 1 b2A + 0 _ - ;

2ik 2ik bz 2

and assume we have a continuous surface out to the shadow boundary_ then_

integrating from z = O to the shadow boundary and excluding the boundary

oontr:ibution gives,

I - 2ik '(0) 2ik

[A,(O)] 2
= (F.10)

4_

If we had a true sphere then the change in the projected area on the plane

of incidence evaluated at z = 0 is simply P_ro_ which gives us of course 3

= _ro2 as expected. In order to apply Equation (F.9) to the information

available, all one need to do is pick up the center point on Figures F.1

and F-5 and compute A'(O) in the following manner ard observe the precaution

indicated.

Figures F-9 and F-IO show the geometry of the situation_ where f'igure (F-9)

is the projection in the z, plane (i.e., x, y plane). From Figure (F-9) we see

that for the contour of constant z shown in Figure (F-IO) the area is give*_

by

F-I.2
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True Sphere

Figure F-9 Cut of Perturbed Sphere Relative

to True Sphere
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where

A(z) i 2- 2 p d e, (£.ii)

P2 -_2 r° 5 - 2 ro z, ro >> 5, z. (F.12)

Substitution of (F.II) into Equation (F.IO) gives,

i fA(z) = -2_r° [z 2_ _ d e] (F.I3)
0

2_

A'(O) = -2_r ° [i I / _52_ 3i (o) d o] (r.i4)
0

hence

= -2=r ° (i -_(o) )

where _ implies the average value of _-_z_ in the region 0 < e < 2_.
Now, consider - -

38 _5 _zz= _ (F.l_)

From Equation (F..ll)

1

(F.16)
z _ 2-

hence _ - r
C

= (F.!7)
_6 2-

0

Substi_ation into (F.13) for A'(O) gives,

-.2_

A'(O) -- -_r o 85 2_

_-_ - r
0

1

£-15
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subject to the restriction

@ > ro

within and on the boundary @ = const.

(F.19)

Then the cross section is simply,

2
r

0
(F. 20 )

To implement Equation (F.20) we draw a circle of radius p, subject to con-

dition (F.19) at the center of the figures for which one wishes to obtain

the cross section. Then compute,

As (F.2I)
= _ = (Sp - 5center)/P

at a n_mber of points on the circumference. From these values find the

average value,

and substitute it into Equation (F.20) for the cross sections. The

validity of this procedure of course depends upon condition (F.19).

we examine the physics a little closer, we have by Equation (F.IO).

2_

f bp dO= p
0

which when substituted back into (F.9) gives_

2_ 2

i $ pdO= _ 2--7 bz

o

Since z is the equation of the surface the points on the surface for

which

If

(F. 22)

(F .23)

are just the specular reflection points. Hence; if @ is chosen such that

the circle encloses a specular point_ the results will not be valid.

F-16



If the perturbed surface follows the true sphere contour rather closely
then the specular point will be around P = 0 as can be seen from (F.9).

Therefore, in determining p one must find the specular point and choose

this point as @ = O. It can be shown that

P

lim = -r
p _ 0 _z o

Z T_ 0 _-p

Therefore, no singularity exists within the boundary, and the cross section

will only be valid out to the next specular point. If no other specular

points appear in the region, the cross section should be quite accurate.

In conclusion, it is pointed out that Equation (F.20) will be valid

if the perturbed sphere has a horizontal slope at x = y = O. If, however,

this is not the case, then all one need do is locate the specular point
which should be near the center and measure

_5

centered around this point. This transformation does not present any change

in the predicted cross section since the portion over which we are measuring

is compar:atively flat. If, on the other hand, more than one specular point

lies close to the origin the prediction will not be valid.

F-17



Conduction Co_po,alion



• go,J.d,o.

APPENDIX G

G.I RADAR CROSS SECTION OF ECHO II

The radar cross section of Echo II can be determined by physical optics

method. Here, the backscattered magnetic field can be determined by

where

A

jkH -u2kR 7 k° -j2k "_
-- _ O O ^ ^ O

Hs 2_R e ( " _) a e ds (G.I)
O

s 1

is the unit polarization vector of the incident magnetic field

k is the unit propagation vector of the incident magnetic field^O

n is the unit outward normal vector to the surface of the object

is the position vector of the surface of the object

H is the magnitude of the incident magnetic field

R ° is the distance from the point of observation to the scatterer
o

reference point

s I is the illuminated surface of the scatterer.

With the propagation vector given by

o = 3 sin 01 cos 91 + 9 sin 01 sin 91 + _ cos 0

and the position vector given by

7 = r (3 sin 0 cos ¢ + _ sin 0 sin ¢ + _ cos 0)

r = (x2 + y2 + z2)i/2

and the position vector given by

(G.2)

r = r (3 sin 0 cos ¢ + 9 sin 0 sin ¢ + _ cos 0)

2 1/2
r = (x 2 + y + z2)

then

ko r = r [sin 01 sin 0 cos (9 - 91 ) + cos 0 cos 01] (G.6)

For the Echo II scatterer, the object is a sphere with small perturbations

on the surface, and therefore, the unit outward normal vector can be repre-
sented by

r ^= -- = r (G.7)
Irl

G-I
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and thus giving

" _ = sin 81 sin 8 cos (¢ - ¢i) + cos 8 cos e 10

(G.8)

Let _ (8, ¢) = sin 81 sin @ cos (_ - ¢i ) + cos e cos el_ then the scattered

magnetic field is

jk.H -j2kR F e-U2k#(8o o ^ 2 ,¢)r dO d¢ (G.9)
_s = 2_R"-'-_- e d a r _ (0, ¢) sin O

0

2
since ds = r sin 0 dO de. For the seatterer under consideration_ Echo II_

the surface of this scatterer is assumed to be a perturbed spherical surface

with small perturbations less than a wavelength. The distance r from the

center of the scatterer to a point on the surface can be represented by

r = r + _(ro) (G.IO)0

where r is the radius of the sphere and g(r ) is the deviation of the scat-
.0 .

terer f_om a spherical body. Since the devlatlons are small_ only the phase

variations need to be considered so that the scattered magnetic field can be

approximated by

jkH -j2kR -j2k#(O, ¢)r °
-- 0 0 2 _ ^

H s = _ e ro j a # (0, ¢) sin 0 e (G.11)
0

s 1

[1 - 2jk_ (0,¢) 6(r o) - 2 k2 _2 (0,¢) g2(ro)] dO de (G.12)

The first term of the above integral is the sphere scattered field.

The second and third integrals pertain to the scattered field resulting

from the surface not being spherical.

The Echo II balloon was intended to be a spherical body_ but due to

the construction_ the joining of spherical segments at a seam_ the surface

budges and flattens. The amount of budging and flattening is dependent upon

inflation pressure. Plots of constant contours of depression from the

spherical tip for various inflation pressures were made available so that

from these data_ the deviation from the spherical body can be determined.

These deviations can best be represented in rectangular coordinates so that

by the use of the rectangular-spherical coordinate transformations_

x = r sin 0 cos
o

y = r sin 0 cos ¢ (G.13)
o

Z = r cos 0
0

G-2



so that

dO = dx cos _ + dy sin

r cos @
0

d@ = dy cos @ - dx sin
r sin e
O 0

cos ¢ = x/(x2 + 9) 1/2 sin _ = y/(x 2 + y2)I/2

sin O = (x2 + y2)i/2/ro cos 0 = (I - _2) I/2

r
o

Also, 5(ro) _ 5z cos 0 so that the scattered field becomes

jkH -j2kRo _ ? _j2k_(O,_)r °
_ o 2 ^

Hs 2_R e a _ (0,¢) sin 0 e dO d_0
0

s 1

-r2 ? _ x2+9_(x'Y) [(x 2 _ y2) dx dy + xy (dy 2 - dx2)]

s 1

[ jk _(x'y)5r z + k2 _2(x'')522 z cos O ] e-j2k_(x'y) }
0 r

o

where

(G.14)

(G.15)

(G.i6)

(G.17)

(G.18)

(G.19)

_(x,y) = (x cos @i + y sin _i ) sin O 1 + ro cos e cos (91

2 . 2 >1/2cos 8 = i - x * y
2

r
o

(G.20)

(G.21)

Since the task of defining the perturbed function 5 over all points

become formidable_ discrete points will be considered soZthat the integral

involving the perturbation function can be written as a sum. With

dx = dy = Ax = b,

and

x=nAx=bn (G.22)

y =mAx =bm,

the scattered field is
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S

0

2_R
0

-j2kRo{r 27 ^ -J_#_'¢)ro ,e a sin 8 e _<8,_) d8 d@
0

(G.23)

_ (n,m) n - m e-j2k_(n,m)
r n2 2o + m

T1 .rf'L

ro r
o

(G.25)

where

cos 89/n = [ 1- b2 n2 + m2 ]1/22
r

o

For the problem at hand, e is small so that

cos _ _ I b2nm(n2 + m2]
"mn 2r "

0

and by' letting ¢1 = 0

,_r,n,rn'_,= bn sin 81 + ro cos @i - b2

The resu!.ta:__tscattered field is

cos Onm cos O1 (G.26)

(n 24-m 2) cos e 1
2r 2

0

(G.27)

(G.28)

(G.29)

where

j_
)_ o

--s"" 1 2:_.R
o

s 1

2b2 -j2kr°c°s@ll I ( 2n - m2)
-- e _ _ e-j2kT(n'm)

ro n n 2 + m2
n m

k_ c_2

J T znm
0 r

o

e a _ (8, _) sin 8 e -j2k#(8'_)r° d8 d¢ (G.30)
0

(G.31)

(G.32)

t

y,_n,m) = bn sin eI

b2

2r
o

(n2 + m2) cos eI (G.33)
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n = bn sin @I + ro cos @i

5 is the deviation at point (n,m) from the sphereznm

(G.33)

The above representation contains within it two approximations. The

first is caused by replacing the exponential in Equation G.9 by the first

three terms in its power series expansion as given by the factor 0.12. In

order to justify this approximation, an estimate of the magnitude of 5(ro)
must be found and using this estimate the error induced by omitting the

remainder of the power series must be computed. The magnitude 5(r ) was
i . oobtained by examining the actual data n the photogramsnetrzc measurements.

The second approximation is obtained by replacing the integral by the sum-

mation. The accuracy of this approximation is, of cours% dependent upon

the magnitude of the grid size, b. The computations of the series were

performed using successively smaller grid sizes until the difference in

computations, taking account of the possible error induced by the first

approximation, gave cross section values which differed by less than .75

db. The possible round off error inherent in the computer program was shown

to give cross section error of less than .25 db. On this basis it is asserted

that the total cross section error of the computation is less than i db.

The integral for the scattered field from the spher% namely

-H -j2(Ro-ro)
-- 0

Hsphere 2R a ro e (G.34)
o

For the orientation chosen in this problem, 01 varies between n/2 and
3_/2 so that by letting O. = O - _ for computation simplication, the scat-

tered field about a norma_- asp°or 0 ° varying between -_/2 and _/2 becomes

"r ( 1)g ((9) - o o -j2k(Ro-ro) ^ 2kb 2 -jkro(1-c°S@o)
s o - 2_ e a I + --_r e [el(8o ) - j_>2(8o ) (G.35)

O O

where

ko_2 n2 _ m 2

WI(@°) =_ _' r-_ (7+_>

n m

n m

e-j2ky(n, m)
znm

o

k2(_3 2 2

n (n-m ) e-j2ky(n,m) 52 2 znm
r- n - m
O

= bn sin 8 - r cos 8
n o o o

7(n,m) = bn sin @ + b2
o

0

(n2 + m2) cos 8
o

(G. 36 )

(G.37)

(G.38)

(G.39)
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With b = 6 inches, r = 810 inches, k : 2_ (0.084f) f in kmc,
o

H2Rr -j2k(R ° - ro) ( o )
-- o o ^ -j2kro(l-c°s8

Hs(8o) - e a i + O.OlSlf e
O

[_l (Co) - j % (eo)] } (G._O)

From the inflation test data, values of depression were referenced to

a planar surface so that for the scattered field equation,

b2 (n2 + m 2) (G.41)
6znm = 6Rnm 2r

o

where Sn is the read value and the second term is the correction for the

spheriea_devlatzons. In Table G-l, the average deviation, the average of the

square of the deviation, and the range of the deviation for each gore at the

various pressures are listed.

The cross section of an object is given by

= 4 R2 IHsl2
o I%12 (G.42)

where H is the scattered magnetic field and H. is the incident magnetic

field. SFor the problem at hand_ the cross section is

2 I -jkr°(l-c°se°) 2
0(8 ) = _ r Ii + 0.015lf e [_l(Oo) - j_2(8o)] (G.43)o o

where when2a)i(8 ) = (_2(eo) = 0 the remaining cross section is that of the

sphere, _r o. T_e average cross section over all aspect angles is found by

_2 -j2kro(1-cOSeo)
2 O.O151f fc =_r 1+ e

avg o _2 - _l

[_l(eo ) _ _2(eo)] deo 2

where #i and _2 define the interval of integration.

(<_.44)

(c-.4_)
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TABLE G-I

Gore Range Average Standard

Number Pressure of Deviation Deviation Deviation

ib/in 2 (inches) (inches) + (inches)

102 2800 -0.233 to 0.231 -0.029 0.112

4800 -0,078 to 0.589 O.i19 0.148

7400 -0.045 to 0.149 0.078 0.088

2800 -0.368 to 0.231 -0.070 0.151

4800 -0.384 to 0.200 -0.018 0.137

7400 -0.098 to 0.168 -0.014 0.052

103

106 4800 -0.660 to 0.005 -0.239 0.291

7400 -0.517 to 0.031 -0.163 0.198

i 4800 -0.515 to 0.195 -0.045

7400 -0.647 to 0.221 -0.072

0.169

0.219

If it is assumed that the cross section results from only the two gores

indicated in each inflation data plots, that is only the two gores shown are

perturbed significantly to effect the cross section, then the resulting

cross section relative to the sphere for 5.85 KMC are shown in Figures d-I

and G-2 for the angle range of -8.5 to +8.5 degrees as a function of pres-

sure. if it is assumed that the balloon was made of samples of the gores as

shown in the static inflation plots along the spherical surface; then the

relative cross section for the various pressures are listed in Table G-2 for

a 5.85 KMC frequency.

TABLE G,-2

Pressure @ores

Relative Cross

Section (db)

2800 102 and 103 2.35

4800 102 and 103 -1.24

106 and i 3.00

7400 102 and 103 -0.76
106 and i 2.22

e-7
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or
2 (m)

a = cr + 4.5 db.

Thus, the near-field measured cross section must be increased by 4.9 db to
obtain the true cross section.

The antenna taper, previously mentioned in connection with background

levels has an effect upon the data. At the m_ximum bistatic angle, that part

of the balloon which is most significant for scattering, i.e., that part in

the neighborhood of the bistatic angle bisector, is at the 9.9 ° point of the

antenna pattern_ with a consequent power loss. The resulting data correction
is:

+ 3 db; at L-Band_ horizontal polarization

+ 2.2 db_ at L-Band, vertical polarization,

+ 9 db, at C-Band, horizontal polarization, and

+ 4 db, at C-Band, vertical polarization.

These corrections must be applied to the measured cross section at bistatic

angles of 30 ° . For lesser bistatic angles, we have interpolated linearly.

D.4 THE STATIC INFLATION TESTS

During the period_ 1 June - i0 August, 1963, three A-12 balloons were in-

flated. Balloon No. 9 was initially inflated to check out systems. Balloon

No. ii was then inflatedto rupture, Balloon No. 9 was reinflated to rupture_

and Balloon No. 13 was inflated to rupture. R.F. data was obtained for all

three balloons. For balloons No. 9 and No. Ii, measurements were made at

1.71 KMC, 9.69 KMC, and 9.89 KMC. The test procedure was to inflate the bal-

loon to a given nominal surface stress; to maintain the stress while a complete

R.F. test sequence was performed: to reduce the stress to approximately 900 psi,

and to perform the test sequence again iLL _L:- ,,_^_....;" _^--_^- m_ .....

then repeated at a higher pressure: until rupture. It was very quickly observed

that the HV cross sections were_ with few exceptional points, well down

in the backgrQund.

To analyze the data_ it was decided to divide the balloon into 9° intervals.

After making the corrections to the data noted above, the average cross sectiDn

on each 9 ° interval was measured using a planimeter, and the scintillation on

the interval (i.e., the difference, in db, between the maximum and minimum

cross section. There was not enough difference between the D.69KMC and 9.85

KMC data to warrant considering both, so 9.89 KMC was chosen. The results are

shown in Tables D-I and D-2. The columns headed 0,_9, iO_ 15, 20, 25, are the 5 °

intervals starting from the right (reinforced gore) ± . The entries under "m"

are the mean values relative to the nominal balloon, and the entries under "_'

are the scintillations.

Balloon No. 13 was designated to be the prime data balloon. In order to

keep the balloon under stress for shorter periods of time, it was decided to

omit the 5.65 KMC measurement and to perform cross polarization measurements

only as spot checks. Theresults are listed in Table D-3.

iFor Nos. ii and 13 Balloons. For NO. 9 Balloon_ the reinforced gore was

on the left. D-7



TABLE D-I

MEAN VALUES AND SCINTILLATIONS OVER 9° INTERVALS
i

NO. ii BALLOON

Pattern # Psi 0 5 i0 15
m A* m A m & m

46 - 63

82 - 99

126 - 143

1.62 - 179

180 - 197

750 LLw_ 0 lO -4 28 0 8 -12 I0 -3 30 1 8 0

CV 1 9 -i 23 -i 14 -2

CH 0 9 0 28 -i 19 -3

1900 LV i 8 -2 33 0 6 @

1 12 -i 28 1 8 10 9 -2 21 0 13 -4

CH o 1o -1 al -i 19 -3

2780 L¢ 1 8 -i 26 1 6 0

L_ i 7 0 27 2 8 i

CV i 8 0 18 i 9 -2

CH 0 9 -i 18 0 8 -I

4800 _7 I 6 0 19 0 7 1
2 9 0 17 2 4 3

_, i 6 I 12 i 3 0

C_ 0 4 0 12 i 3 i

500 LV 2 9 I 23 I 7 2
3 8 1 22 i 5 2

C_ 0 6 -i 16 0 7 -2

CH 0 7 -i 15 0 7 0

TABLE D-2

MEAN VALUES AND SCINTILLATIONS OVER 5O INTERVALS

Pattern # Psi

202 - 217 750

20 25
A m A m A

NO. 9 BALLOON

7 0 6 0 4

4 i 3 i 3

7 i 9 0 4

9 i 7 0 4

5 I 3 0 4
6 2 4 i 4

4 -i 8 -i 5
6 -i 9 -i 4

6 2 3 1 3

5 2 3 2 3
3 0 4 -i 3

5 i 5 o 4

4 2 3 i 5
3 4 4 2 3
I 0 3 -i 3

2 i 2 0 2

3 3 3 2 3
4 4 3 2 3

3 -I 5 -I 4

3 0 5 -i 3

m A m A m A m & m A m A

-i 4 -i 3 -i 6 -3 8 -5 17 -i 8
1 3 i 5 1 5 0 6 -5 23 i 4

" -3 i0 -2 6 -i 9 -4 12 -4 18 -3 19

CH -2 9 -i 6 -i 12 -i 9 -5 17 -2 20

* Entries under "A" give the peak to peak scintillation in db. This is more convenient

to work with, since the mean does not always fall half way between these extremes.
D-8
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Eat tern # Psi

230 _.4.1 1900

260 - 269 _>.600

2_0 - 289 4800

290 299 =_'-- r j'wO

TABLE D-2 0Ont.

0A 5 mlOA ml5A 20m m A m & m29G

T. 0 5 -]. 3 0 4 -l 5
.?7 o 4. o 4 .1. 5 o 3

-2 i0 -4 6 -4 12 -2 9,J..,

cv. -2 9 -.t 5 0 12 -1 9
H

-3 20 0 5

-4 12 :[ 5

-5 13 -3:1.9

3 ]5 -2 20

:L, l 6 O 3 1 4 0 4 -2
T v 1 4 2 2 4 4 1 3 -2
P'- -2
,i_: -1 9 0 5 1 9 6 -5
.,_ -.1 9 -.l 5 O 10 0 6 -4

a ] 5 0 9 I 4 i 5 -4
;%,
.L:,_ i 5 ] 2 2 5 i 3 -]
•_,, 7 1 3 2 7 0 4 -2
-l_J

,.,_: ,) 7 1 5 2 7 :I 5 -2

12 1 4
13 2 4
16 -2:16
]6 -] ]9

:1] 1 4

7 2 3
8 .1. :1.2

.! '_ 0 10

L¢ ] 4 0 4 2 _ ]_ 3 -2 ! ,; 2 4
]..v l 5 L 4 0 5 2 3 -l .ii 2 '5
_;'- 0 Q ] 6 ] 7 1 6 -P il 0 ]3
_V,..... 0 a 0 5 0 1 t 3 7 -1 l ? 0 13
f.

][ _ _'t" ---r'rl #

3.12 - 329

322 - 339

, ,, .. -,- ,__A:!..,N[,D-3

M}:AN VALUES AKD SC!!_PI'!LLA210NOVER 5° INTERVAL-Z

N0. ]3 __ALI:00N

}si 0 5 10 20 m25m S m A m S m15 A m A . ±\

4OO

.... _f

,V

CH

:L(,
L v

a;

"_H

15oo

3 9 0 3 0 4 0 4
2 4 1 3 0 4 3 4

5 6 4 i:i 6 7 2 5

5 7 3 12 3 6 3 8

2 3 0 3 -] 3 1 3
2 3 1 3 1. 2 3 2

2 4 3 8 1 7 -1 5
0 5 3 9 1 8 1 4

0 3 0 4
3 4 .1 2
2 6 3 8
2 6 3 7

1 2 2 4
2 3 3 4

-2 4 -] 6
-i 5 o 6

D-9
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_AB_.E D-3 Cont

_attern # Psi

o 5A iom A m m A m15 A m20 A

340 - 347 2800 L_7 2 3 1 3 -1 2
r.v• I 2 0 3 -2 5

e7
_H 0 4 1 8 -2 9

348 - 359 4800 L:7 2 i 1 2 0 3
2 I. 2 2 0 3

c_.: .i 3 ]. 5 i 4

CH 0 5 1 5 0 6

360 - 371 500 L_ :2 2 1 3 I 4
11.."t._ l" 2 i/ 3 0 5

c!i_ o 5 i 71 9

bH'" 0 9 0 7 -i 7

372 - 383 7400 I,V I. l ] 3 0 2
2 2 .I 4 0 3

L_ 0 4 1 3 0 4

'L:_ 0 3 1. 9 -I 7

.r

384 - 393 500 _-hj 2 2 ] 2 0 3
L.q. 1 2 i 3 0 5
c'- o 6 I 6 o 6
<V -]. 6 1 6 0 7
b H

m 25 A

0 3 l 5 I. 3
2 3 3 3 2 2

-] 9 0 5 0 9
0 4 1 6 1. 5

-1 3 -]. 9 0 4
]. 4 2 3 ]. 4

-i _ -i 5 o 6
o 5 o 5 o 5

-2 3 -1 5 0 3
1 3 ]. 3 1 2

-.2 6 -i 6 O 2

-2 8 l 6 -! 3

-i 3 0 4 0 4

2 2 2 3 2 3

--2 7 o 5 -.]. 5
-2 6 -] 5 -i. 6

D.5 DL,_,_,bSz,ON OF THE R}.bt:LTc

For the pr_.me data bal.l:,:JnNo. 13_ we are interested iL the. mean va].ues

and scintillation as functions _f frequency_ pressure_ and p:::l.arization. To

exhibit this dependence_ we ha_,e choser,_ to display the data J.n the foll,:wir_@

tabies_ Table D-4 and Tab:le D-5.

m - KE,,_._.,:-:_.,R_,EDt:,.........._E

 'sI % cv
400 0 ]. 4 3 3 9 18 18

1.500 0 i 3 3 5 ll -I i

2800 i 0 i I. 6 5 -6 0

4800 i 2 I I 4 9 0 2

500 i I I 0 -i 5 -i -I

7400 i I ]. I -2 5 -3 -3

500 1 i i i 1 7 -3 -5

rl I.'

m - SUKMED ,,,v_:_,..,__. CTHER _._-"'_'"Rz,,_-*

*These sums, when divided by 5, give the average values of m and A for

the unreinforced part of the balloon.

D-./O

I 3 2 4 2 4

2 2 2 2 2 3

-2 6 -2 6 -i 7
o 9 1 5 ] 9



TABLE D-5

A _ REINFORCED GORE A - SUMJ_D OVER OTHER GORES*

F_: % k_ % % % % Cv CH
4oo _ _ _.l 12 2o 1.8 32 34
:L_OO3 3 8 9 z._ 14 26 28
2800 3 3 5 8 16 1.4 28 28

4800 2 2 7 7 15 14 22 26

500 3 3 7 7 18 18 31. 27

7400 3 4 3 5 14 1.3 22 27

500 2 3 6 6 16 15 29 30

These tables are self-explanat_ry and represent the final reduction of the

data obtained on the No. 13 balloon. They reveal several clear, albeit slight,

dependences upon the parameters. It should be borne in mind _:hat first uf all.3

the computations exhibited in the tables in this report have been rounded to the

nearest decibel3 and that small db differences in cross section can cor:r_s[_ond

to larger percentage differences in fields_ and therefore represent signif:i:'ar_t

physical effects. The data reduction herein has been designed to extra<:t from

the raw data an expression of systematic dependence upon parameters. It re-

ma:i:,s an ,)[en question to decide the effects of their depender_ce upon a part:i-

eular <:)mmu:9.i,:.ationssystem. Even though the scintillations in the radar cross

secuiDn of an A-12 balloon may be large_ they are systematic and predictib]e_ a:_d

a pr,_gram to design them out of a communications system through the use uf
f:i:lters is feasib].e.

_Thesb sums, when divided by 5, give the average values of m and A for

the unreinforced part of the balloon.
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D.6 SAMPLES OF RAW DATA


